dart_periphery 0.9.18 copy "dart_periphery: ^0.9.18" to clipboard
dart_periphery: ^0.9.18 copied to clipboard

PlatformLinux

dart_periphery is a Dart port of the native c-periphery library for Linux Peripheral I/O (GPIO, LED, PWM, SPI, I2C, MMIO, ADC and Serial peripheral I/O).

dart_periphery #

alt text

pub package Pub Points All Contributors BSD License

πŸ“£ Important hints #

Added RISC-V support, thanks to Ali Tariq from 10xEngineers for providing remote access to a Banana Pi BPI-F3 16GB on Cloud-V, which enabled building the RISC-V variant of the c-periphery library.

The repository’s Wiki is now enabled.

πŸ“– Introduction #

dart_periphery is a Dart port of the native c-periphery library (v2.4.3) for Linux Peripheral I/O (GPIO, LED, PWM, SPI, I2C, MMIO and Serial peripheral I/O). This package is designed for System on Chips (SoCs) such as Raspberry Pi, NanoPi, Banana Pi, and others.

What is c-periphery? #

Abstract from the project web site:

c-periphery is a small C library for

  • GPIO,
  • LED,
  • PWM,
  • SPI,
  • I2C,
  • MMIO (Memory Mapped I/O)
  • Serial peripheral I/O

interface access in userspace Linux. c-periphery simplifies and consolidates the native Linux APIs to these interfaces. c-periphery is useful in embedded Linux environments (including Raspberry Pi, BeagleBone, etc. platforms) for interfacing with external peripherals. c-periphery is re-entrant, has no dependencies outside the standard C library and Linux, compiles into a static library for easy integration with other projects, and is MIT licensed

dart_periphery binds the c-periphery library with the help of the dart:ffi mechanism. Nevertheless, dart_periphery tries to be close as possible to the original library. See the following documentation. Thanks to Vanya Sergeev for his great job!

πŸ€” Why c-periphery? #

The number of GPIO libraries/interfaces is shrinking:

dart_periphery

πŸͺ§ Examples #

GPIO #

alt text

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

void main() {
  var config = GPIOconfig();
  config.direction = GPIOdirection.gpioDirOut;
  print('Native c-periphery Version :  ${getCperipheryVersion()}');
  print('GPIO test');
  var gpio = GPIO(18, GPIOdirection.gpioDirOut);
  var gpio2 = GPIO(16, GPIOdirection.gpioDirOut);
  var gpio3 = GPIO.advanced(5, config);

  print('GPIO info: ' + gpio.getGPIOinfo());

  print('GPIO native file handle: ${gpio.getGPIOfd()}');
  print('GPIO chip name: ${gpio.getGPIOchipName()}');
  print('GPIO chip label: ${gpio.getGPIOchipLabel()}');
  print('GPIO chip name: ${gpio.getGPIOchipName()}');
  print('GPIO chip label: ${gpio.getGPIOchipLabel()}');

  for (var i = 0; i < 10; ++i) {
    gpio.write(true);
    gpio2.write(true);
    gpio3.write(true);
    sleep(Duration(milliseconds: 200));
    gpio.write(false);
    gpio2.write(false);
    gpio3.write(false);
    sleep(Duration(milliseconds: 200));
  }

  gpio.dispose();
  gpio2.dispose();
  gpio3.dispose();
}

copied to clipboard

I2C #

alt text

import 'package:dart_periphery/dart_periphery.dart';

/// https://wiki.seeedstudio.com/Grove-Barometer_Sensor-BME280/
/// Grove - Temp&Humi&Barometer Sensor (BME280) is a breakout board for Bosch BMP280 high-precision,
/// low-power combined humidity, pressure, and temperature sensor.
void main() {
  // Select the right I2C bus number /dev/i2c-?
  // 1 for Raspbery Pi, 0 for NanoPi (Armbian), 2 Banana Pi (Armbian)
  var i2c = I2C(1);
  try {
    print('I2C info:' + i2c.getI2Cinfo());
    var bme280 = BME280(i2c);
    var r = bme280.getValues();
    print('Temperature [Β°] ${r.temperature.toStringAsFixed(1)}');
    print('Humidity [%] ${r.humidity.toStringAsFixed(1)}');
    print('Pressure [hPa] ${r.pressure.toStringAsFixed(1)}');
  } finally {
    i2c.dispose();
  }
}

copied to clipboard

alt text

import 'package:dart_periphery/dart_periphery.dart';

/// Grove - Temp&Humi Sensor(SHT31) is a highly reliable, accurate,
/// quick response and integrated temperature & humidity sensor.
void main() {
  // Select the right I2C bus number /dev/i2c-?
  // 1 for Raspbery Pi, 0 for NanoPi (Armbian), 2 Banana Pi (Armbian)
  var i2c = I2C(1);
  try {
    var sht31 = SHT31(i2c);
    print(sht31.getStatus());
    print('Serial number ${sht31.getSerialNumber()}');
    print('Sensor heater active: ${sht31.isHeaterOn()}');
    var r = sht31.getValues();
    print('SHT31 [tΒ°] ${r.temperature.toStringAsFixed(2)}');
    print('SHT31 [%Β°] ${r.humidity.toStringAsFixed(2)}');
  } finally {
    i2c.dispose();
  }
}
copied to clipboard

SPI #

alt text

import 'package:dart_periphery/dart_periphery.dart';

void main() {
  var spi = SPI(0, 0, SPImode.mode0, 1000000);
  try {
    print('SPI info:' + spi.getSPIinfo());
    var bme280 = BME280.spi(spi);
    var r = bme280.getValues();
    print('Temperature [Β°] ${r.temperature.toStringAsFixed(1)}');
    print('Humidity [%] ${r.humidity.toStringAsFixed(1)}');
    print('Pressure [hPa] ${r.pressure.toStringAsFixed(1)}');
  } finally {
    spi.dispose();
  }
}
copied to clipboard

Serial #

alt text

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

///
/// [COZIR CO2 Sensor](https://co2meters.com/Documentation/Manuals/Manual_GC_0024_0025_0026_Revised8.pdf)
///
void main() {
  print('Serial test - COZIR CO2 Sensor');
  var s = Serial('/dev/serial0', Baudrate.b9600);
  try {
    print('Serial interface info: ' + s.getSerialInfo());

    // Return firmware version and sensor serial number - two lines
    s.writeString('Y\r\n');
    var event = s.read(256, 1000);
    print(event.toString());

    // Request temperature, humidity and CO2 level.
    s.writeString('M 4164\r\n');
    // Select polling mode
    s.writeString('K 2\r\n');
    // print any response
    event = s.read(256, 1000);
    print('Response ${event.toString()}');
    sleep(Duration(seconds: 1));
    for (var i = 0; i < 5; ++i) {
      s.writeString('Q\r\n');
      event = s.read(256, 1000);
      print(event.toString());
      sleep(Duration(seconds: 5));
    }
  } finally {
    s.dispose();
  }
}
copied to clipboard

Led #

alt text

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

void main() {
  /// Nano Pi power led - see 'ls /sys/class/leds/'
  var led = Led('nanopi:red:pwr');
  try {
    print('Led handle: ${led.getLedInfo()}');
    print('Led name: ${led.getLedName()}');
    print('Led brightness: ${led.getBrightness()}');
    print('Led maximum brightness: ${led.getMaxBrightness()}');
    var inverse = !led.read();
    print('Original led status: ${(!inverse)}');
    print('Toggle led');
    led.write(inverse);
    sleep(Duration(seconds: 5));
    inverse = !inverse;
    print('Toggle led');
    led.write(inverse);
    sleep(Duration(seconds: 5));
    print('Toggle led');
    inverse = !inverse;
    led.write(inverse);
    sleep(Duration(seconds: 5));
    print('Toggle led');
    led.write(!inverse);
  } finally {
    led.dispose();
  }
}

copied to clipboard

PWM #

Ensure that PWM is correctly enabled. e.g. see the following documentation for the Raspberry Pi.

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

void main() {
  var pwm = PWM(0, 0);
  try {
    print(pwm.getPWMinfo());
    pwm.setPeriodNs(10000000);
    pwm.setDutyCycleNs(8000000);
    print(pwm.getPeriodNs());
    pwm.enable();
    print("Wait 20 seconds");
    sleep(Duration(seconds: 20));
    pwm.disable();
  } finally {
    pwm.dispose();
  }
}
copied to clipboard

MMIO #

Memory Mapped I/O: Turns on a led at pin 18 on a Raspberry Pi using MMIO. This direct register access example is derived from elinux.org.

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

const int bcm2708PeriBase = 0x3F000000; // Raspberry Pi 3
const int gpioBase = bcm2708PeriBase + 0x200000;
const int blockSize = 4 * 1024;

class MemMappedGPIO {
  MMIO mmio;
  MemMappedGPIO(this.mmio);

  // #define INP_GPIO(g) *(gpio+((g)/10)) &= ~(7<<(((g)%10)*3))
  void setPinInput(final int pin) {
    var offset = (pin ~/ 10) * 4;
    var value = mmio[offset];
    value &= (~(7 << (((pin) % 10) * 3)));
    mmio[offset] = value;
  }

  // #define OUT_GPIO(g) *(gpio+((g)/10)) |=  (1<<(((g)%10)*3))
  void setPinOutput(final int pin) {
    setPinInput(pin);
    var offset = (pin ~/ 10) * 4;
    var value = mmio[offset];
    value |= (1 << (((pin) % 10) * 3));
    mmio[offset] = value;
  }

  // #define GPIO_SET *(gpio+7) - sets   bits which are 1 ignores bits which are 0
  void setPinHigh(int pin) {
    mmio[7 * 4] = 1 << pin;
  }

  // #define GPIO_CLR *(gpio+10) - clears bits which are 1 ignores bits which are 0
  void setPinLow(int pin) {
    mmio[10 * 4] = 1 << pin;
  }

  // #define GET_GPIO(g) (*(gpio+13)&(1<<g)) - 0 if LOW, (1<<g) if HIGH
  int getPin(int pin) {
    return mmio[13 * 4] & (1 << pin);
  }
}

void main() {
  // Needs root rights and the gpioBase must be correct!
  // var mmio = MMIO(gpioBase, blockSize);
  var mmio = MMIO.advanced(0, blockSize, '/dev/gpiomem');
  var gpio = MemMappedGPIO(mmio);
  try {
    print(mmio.getMMIOinfo());
    var pin = 18;
    print('Led (pin=18) on');
    gpio.setPinOutput(pin);
    gpio.setPinHigh(pin);
    sleep(Duration(seconds: 10));
    gpio.setPinLow(pin);
    print('Led (pin=18) off');
  } finally {
    mmio.dispose();
  }
}
copied to clipboard

ADC #

alt text

Extension hats, such as the Grove Base Hat RaspberryPi Zero, add additional functionality like ADC (Analog-to-Digital Converter) support. See also complete example with support for FriendlyElec NanoHat Hub and Grove Base Hat RaspberryPi.

In this demo, the LED turns on when the value of the light sensor falls below a certain threshold.

import 'package:dart_periphery/dart_periphery.dart';
import 'dart:io';

const wait = 150;
const threshold = 100;

/// https://wiki.seeedstudio.com/Grove-Light_Sensor/ 
/// https://www.seeedstudio.com/Grove-Base-Hat-for-Raspberry-Pi.html
/// https://wiki.seeedstudio.com/Grove_Base_Hat_for_Raspberry_Pi_Zero
void main() {
  const analogPin = 0;
  const ledPin = 16;

  var hat = GroveBaseHat();
  print(hat.getFirmware());
  print(hat.getName());
  print("Analog pin: $analogPin");
  print("Led pin: $ledPin");

  var led = GPIO(ledPin, GPIOdirection.gpioDirOut);
  led.write(false);

  bool ledStatus = false;

  while (true) {
    var value = hat.readADCraw(analogPin);
    if (value < threshold) {
      if (!ledStatus) {
        ledStatus = true;
        led.write(true);
      }
    } else {
      if (ledStatus) {
        ledStatus = false;
        led.write(false);
      }
    }
    sleep(Duration(milliseconds: wait));
  }
}
copied to clipboard

πŸ— Install Dart on Raspbian and Armbian #

1.) Navigate to the home directory:

cd ~
copied to clipboard

2.) Download the last stable Dart SDK from archive for your CPU architecture/OS and unzip it.

arm #

wget https://storage.googleapis.com/dart-archive/channels/stable/release/3.7.0/sdk/dartsdk-linux-arm-release.zip
unzip dartsdk-linux-arm-release.zip
copied to clipboard

arm64 #

wget https://storage.googleapis.com/dart-archive/channels/stable/release/3.7.0/sdk/dartsdk-linux-arm64-release.zip
unzip dartsdk-linux-arm64-release.zip
copied to clipboard

IA32 #

wget https://storage.googleapis.com/dart-archive/channels/stable/release/3.7.0/sdk/dartsdk-linux-ia32-release.zip
unzip dartsdk-linux-ia32-release.zip
copied to clipboard

X64 #

wget https://storage.googleapis.com/dart-archive/channels/stable/release/3.7.0/sdk/dartsdk-linux-x64-release.zip
unzip dartsdk-linux-x64-release.zip
copied to clipboard

RISC-V (RV64GC) #

wget https://storage.googleapis.com/dart-archive/channels/stable/release/3.7.0/sdk/dartsdk-linux-riscv64-release.zip
unzip dartsdk-linux-riscv64-release.zip
copied to clipboard

3.) Move and grant the appropriate permissions to the SDK:

sudo mv dart-sdk /opt/
sudo chmod -R +rx /opt/dart-sdk
copied to clipboard

4.) Add Dart SDK to the path by editing ~/.profile and then apply the changes:

nano ~/.profile
copied to clipboard

following command

export PATH=$PATH:/opt/dart-sdk/bin
copied to clipboard

at the end of the file and call

source ~/.profile
copied to clipboard

after editing to apply the changes.

Test the installation

dart --version
Dart SDK version: 3.7.0 (stable) (Wed Feb 5 04:53:58 2025 -0800) on "linux_riscv64"
copied to clipboard

πŸ“š Native libraries #

dart_periphery includes prebuilt native c-periphery libraries for

Important hint: dart_periphery includes an automatic mechanism to load the correct library.

The additional methods described here can be used to override this default mechanism if needed. But be aware, any of these methods to disable or change the behaviour the auto detection must be called before any dart_periphery interface is used!

/// Sets the tmp directory for the extraction of the libperiphery.so file.
void setTempDirectory(String tmpDir)

/// Allows to load an existing libperiphery.so file from tmp directory. 
void reuseTmpFileLibrary(bool reuse)
copied to clipboard
/// loads the shared library 
/// export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
useSharedLibrary(); 
copied to clipboard

If this method is called, dart_periphery loads the shared library. For this case c-periphery must be installed as a shared library. See the section Shared Library for details.

To load a custom library call following method

void setCustomLibrary(String absolutePath)
copied to clipboard

This method can also be helpful for a currently not supported platform.

If you want to load the library from the current directory call

void useLocalLibrary()
copied to clipboard

The appropriate library can be found here .

⏱️ Dart isolates #

Starting from version 0.9.7, the default library handling mechanism creates a temporary library file, named in the format e.g. pid_1456_libperiphery_arm.so. The unique process ID for each isolate prevents repeated creation of the temporary library, avoiding crashes caused by overwriting an actively used library.

Library setup override methods, such as:

void useSharedLibrary();
void setCustomLibrary(String absolutePath);
copied to clipboard

must be called separately within each isolate. This is necessary because each isolate initializes dart_periphery independently.

πŸ“ flutter-pi #

dart_periphery works with flutter-pi, a light-weight Flutter Engine Embedder for Raspberry Pi.

flutter-pi specific methods #

// Loads the library from the flutter-pi asset directory.
void loadLibFromFlutterAssetDir(bool load) 
copied to clipboard

loads the appropriate library from the flutter asset directory. This overwrites the library self-extraction mechanism.

These methods must be called before any dart_periphery interface is used! See last section, native libraries for details.

List<String> getFlutterPiArgs();
copied to clipboard

returns the command line parameter list of the flutter-pi command. The last parameter contains the asset directory.

πŸ”¬ Tested SoC hardware #

πŸ–₯ Supported devices (sensors, actuators, extensions hats and displays) #

🌑 flutter_pi_sensor_tester #

alt text

This subproject bases on flutter-pi and implements a simple Dart isolate/stream architecture designed to transfer sensor data from an isolate to the Flutter UI:

Isolate interface: This consists of the steps InitTask, MainTask, and ExitTask, along with a limited back channel for controlling the Dart isolate. This setup is typically used for sensor measurements:

  • InitTask: Initializes the sensor.
  • MainTask: Collects sensor data and passes it to a stream.
  • ExitTask: Disposes of the sensor.

Listening Mode: Supports user-defined handling for isolate events. This variant remains on standby for data; once data is processed, the result is passed to the stream and subsequently to the Flutter UI. This model is used for actuator control, such as operating a LED.

Support for Multiple Streams: Enables handling of multiple data streams simultaneously.

This project is currently still beta and development is ongoing.

πŸ’§ flutter_sensor_tester #

This project builds upon the flutter_pi_sensor_tester by introducing a client/server architecture, enhancing its functionality for distributed applications.

alt text

Currently in its alpha stage, the project is scheduled for release in March 2025.

πŸ“‹ Test matrix #

Test suite

Architecture GPIO GPIOsysfs I2C SPI Serial MMIO PWM LED
ARM Β² βœ… βœ… βœ… βœ… βœ… βœ… βœ… βœ…
AARCH64 Β³ ❌⁴ βœ… βœ… βœ… βœ… βœ… βœ… βœ…
X86 ⁡ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
X86_64 ⁡ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐
RISC V ⁢ ☐ ☐ βœ… ☐ ☐ ☐ ☐ ☐

☐ missing test | βœ… test passed | ❌ test failed

Β² Raspberry Pi 3 Model B

Β³ Raspberry Pi OS (64-bit), NanoPi Neo2 with a Allwinner H5, Quad-core 64-bit CPU

⁴ Fails for NanoPi, NanoPi Neo2 and Banana Pi on Armbian- same behavior like the original c-periphery test program. This is a point of deeper investigations

⁡ no X86/X86_64 SoC for testing available

⁢ Banana Pi BPI-F3, only limited tests

πŸ™ Help wanted #

  • Testing dart_periphery on different SoC platforms
  • Documentation review - I am not a native speaker.
  • Code review - this is my first public Dart project. I am a Java developer and probably I tend to solve problems rather in the Java than in the Dart way.
67
likes
150
points
6.06k
downloads

Publisher

verified publisherflutterdev.at

Weekly Downloads

2024.09.09 - 2025.03.24

dart_periphery is a Dart port of the native c-periphery library for Linux Peripheral I/O (GPIO, LED, PWM, SPI, I2C, MMIO, ADC and Serial peripheral I/O).

Repository (GitHub)
View/report issues

Documentation

API reference

License

BSD-3-Clause (license)

Dependencies

archive, async, collection, ffi, meta, path, process, stack_trace

More

Packages that depend on dart_periphery