tflite_flutter 0.10.1 icon indicating copy to clipboard operation
tflite_flutter: ^0.10.1 copied to clipboard

TensorFlow Lite Flutter plugin provides an easy, flexible, and fast Dart API to integrate TFLite models in flutter apps across mobile and desktop platforms.

Platform Pub Package Docs

Announcement #

Update: 26 April, 2023

This repo is a TensorFlow managed fork of the tflite_flutter_plugin project by the amazing Amish Garg. The goal of this project is to support our Flutter community in creating machine-learning backed apps with the TensorFlow Lite framework.

This project is currently a work-in-progress as we update it to create a working plugin that meets the latest and greatest Flutter and TensorFlow Lite standards. That said, pull requests and contributions are more than welcome and will be reviewed by TensorFlow or Flutter team members. We thank you for your understanding as we make progress on this update.

Feel free to reach out to us by posting in the issues or discussion areas.


  • PaulTR

Overview #

TensorFlow Lite Flutter plugin provides a flexible and fast solution for accessing TensorFlow Lite interpreter and performing inference. The API is similar to the TFLite Java and Swift APIs. It directly binds to TFLite C API making it efficient (low-latency). Offers acceleration support using NNAPI, GPU delegates on Android, Metal and CoreML delegates on iOS, and XNNPack delegate on Desktop platforms.

Key Features #

  • Multi-platform Support for Android and iOS
  • Flexibility to use any TFLite Model.
  • Acceleration using multi-threading.
  • Similar structure as TensorFlow Lite Java API.
  • Inference speeds close to native Android Apps built using the Java API.
  • Run inference in different isolates to prevent jank in UI thread.

(Important) Initial setup : Add dynamic libraries to your app #

Android & iOS #

Examples and support now support dynamic library downloads! iOS samples can be run with the commands

flutter build ios & flutter install ios from their respective iOS folders.

Android can be run with the commands

flutter build android & flutter install android

while devices are plugged in.

Note: TFLite may not work in the iOS simulator. It's recommended that you test with a physical device.

When creating a release archive (IPA), the symbols are stripped by Xcode, so the command flutter build ipa may throw a Failed to lookup symbol ... symbol not found error. To work around this:

  1. In Xcode, go to Target Runner > Build Settings > Strip Style
  2. Change from All Symbols to Non-Global Symbols

TFLite Flutter Helper Library #

The helper library has been deprecated. New development underway for a replacement at Current timeline is to have wide support by the end of August, 2023.

Import #

import 'package:tflite_flutter/tflite_flutter.dart';

Usage instructions #

Creating the Interpreter #

  • From asset

    Place your_model.tflite in assets directory. Make sure to include assets in pubspec.yaml.

    final interpreter = await tfl.Interpreter.fromAsset('assets/your_model.tflite');

Refer to the documentation for info on creating interpreter from buffer or file.

Performing inference #

  • For single input and output

    Use void run(Object input, Object output).

    // For ex: if input tensor shape [1,5] and type is float32
    var input = [[1.23, 6.54, 7.81, 3.21, 2.22]];
    // if output tensor shape [1,2] and type is float32
    var output = List.filled(1*2, 0).reshape([1,2]);
    // inference, output);
    // print the output
  • For multiple inputs and outputs

    Use void runForMultipleInputs(List<Object> inputs, Map<int, Object> outputs).

    var input0 = [1.23];  
    var input1 = [2.43];  
    // input: List<Object>
    var inputs = [input0, input1, input0, input1];  
    var output0 = List<double>.filled(1, 0);  
    var output1 = List<double>.filled(1, 0);
    // output: Map<int, Object>
    var outputs = {0: output0, 1: output1};
    // inference  
    interpreter.runForMultipleInputs(inputs, outputs);
    // print outputs

Closing the interpreter #

pub points


verified publisher

TensorFlow Lite Flutter plugin provides an easy, flexible, and fast Dart API to integrate TFLite models in flutter apps across mobile and desktop platforms.

Repository (GitHub)
View/report issues


API reference


Icon for licenses.Apache-2.0 (LICENSE)


ffi, flutter, path, plugin_platform_interface, quiver


Packages that depend on tflite_flutter