dnn
library
Classes
AsyncArray
Layer
Layer is a wrapper around the cv::dnn::Layer algorithm.
Net
Net allows you to create and manipulate comprehensive artificial neural networks.
Functions
blobFromImage (InputArray image , {double scalefactor = 1.0 , (int , int ) size = (0, 0) , Scalar ? mean , bool swapRB = false , bool crop = false , int ddepth = MatType.CV_32F })
→ Mat
Creates 4-dimensional blob from image.
Optionally resizes and crops image from center,
subtract mean values, scales values by scalefactor, swap Blue and Red channels.
blobFromImageAsync (InputArray image , {double scalefactor = 1.0 , (int , int ) size = (0, 0) , Scalar ? mean , bool swapRB = false , bool crop = false , int ddepth = MatType.CV_32F })
→ Future <Mat >
blobFromImages (VecMat images , {Mat ? blob , double scalefactor = 1.0 , (int , int ) size = (0, 0) , Scalar ? mean , bool swapRB = false , bool crop = false , int ddepth = MatType.CV_32F })
→ Mat
Creates 4-dimensional blob from series of images.
Optionally resizes and crops images from center,
subtract mean values, scales values by scalefactor,
swap Blue and Red channels.
https://docs.opencv.org/4.x/d6/d0f/group__dnn.html#ga0b7b7c3c530b747ef738178835e1e70f
blobFromImagesAsync (VecMat images , {Mat ? blob , double scalefactor = 1.0 , (int , int ) size = (0, 0) , Scalar ? mean , bool swapRB = false , bool crop = false , int ddepth = MatType.CV_32F })
→ Future <Mat >
enableModelDiagnostics (bool isDiagnosticsMode )
→ void
getAvailableBackends ()
→ List <(int , int ) >
getAvailableBackends
getAvailableTargets (int backend )
→ List <int >
getAvailableTargets
https://docs.opencv.org/4.x/d6/d0f/group__dnn.html#ga711e5056b6642b33d9480c98c6889f56
getBlobChannel (Mat blob , int imgidx , int chnidx )
→ Mat
GetBlobChannel extracts a single (2d)channel from a 4 dimensional blob structure
(this might e.g. contain the results of a SSD or YOLO detection,
getBlobChannelAsync (Mat blob , int imgidx , int chnidx )
→ Future <Mat >
getBlobSize (Mat blob )
→ VecI32
GetBlobSize retrieves the 4 dimensional size information in (N,C,H,W) order
imagesFromBlob (Mat blob )
→ List <Mat >
ImagesFromBlob Parse a 4D blob and output the images it contains as
2D arrays through a simpler data structure (std::vectorcv::Mat ).
imagesFromBlobAsync (Mat blob )
→ Future <List <Mat > >
NMSBoxes (VecRect bboxes , VecF32 scores , double scoreThreshold , double nmsThreshold , {double eta = 1.0 , int topK = 0 })
→ List <int >
NMSBoxes performs non maximum suppression given boxes and corresponding scores.
NMSBoxesAsync (VecRect bboxes , VecF32 scores , double scoreThreshold , double nmsThreshold , {double eta = 1.0 , int topK = 0 })
→ Future <List <int > >