core
library
Extensions
DoubleFp16Extension
on double
IntFp16Extension
on int
ListDMatchExtension
on List <DMatch >
ListFloatExtension
on List <double >
ListKeyPointExtension
on List <KeyPoint >
ListListCharExtension
on List <List <int > >
ListListDMatchExtension
on List <List <DMatch > >
ListListPoint2fExtension
on List <List <Point2f > >
ListListPoint3fExtension
on List <List <Point3f > >
ListListPointExtension
on List <List <Point > >
ListMatExtension
on List <Mat >
ListPoint2fExtension
on List <Point2f >
ListPoint3fExtension
on List <Point3f >
ListPoint3iExtension
on List <Point3i >
ListPointExtension
on List <Point >
ListRect2fExtension
on List <Rect2f >
ListRectExtension
on List <Rect >
ListStringExtension
on List <String >
ListUCharExtension
on List <int >
MatAsync
on Mat
Point2fRecordExtension
on (double , double )
Point3fRecordExtension
on (double , double , double )
PointerCharExtension
on Pointer <Char >
PointerUint16Extension
on Pointer <Uint16 >
PointRecordExtension
on (int , int )
RecordScalarExtension
on (double , double , double , double )
RecordSize2fExtension1
on (double , double )
RecordSizeExtension1
on (int , int )
StringVecExtension
on String
TermCriteriaExtension
on (int , int , double )
VecPointExtension
on VecPoint
VecVec4fExtension
on List <Vec4f >
VecVec4iExtension
on List <Vec4i >
VecVec6fExtension
on List <Vec6f >
Functions
absDiff (Mat src1 , Mat src2 , {Mat ? dst })
→ Mat
AbsDiff calculates the per-element absolute difference between two arrays
or between an array and a scalar.
absDiffAsync (Mat src1 , Mat src2 , {Mat ? dst })
→ Future <Mat >
AbsDiff calculates the per-element absolute difference between two arrays
or between an array and a scalar.
add (Mat src1 , Mat src2 , {Mat ? dst , int dtype = -1 , Mat ? mask })
→ Mat
Add calculates the per-element sum of two arrays or an array and a scalar.
addAsync (Mat src1 , Mat src2 , {Mat ? dst , int dtype = -1 , Mat ? mask })
→ Future <Mat >
Add calculates the per-element sum of two arrays or an array and a scalar.
addWeighted (InputArray src1 , double alpha , InputArray src2 , double beta , double gamma , {OutputArray ? dst , int dtype = -1 })
→ Mat
AddWeighted calculates the weighted sum of two arrays.
addWeightedAsync (InputArray src1 , double alpha , InputArray src2 , double beta , double gamma , {OutputArray ? dst , int dtype = -1 })
→ Future <Mat >
AddWeighted calculates the weighted sum of two arrays.
batchDistance (InputArray src1 , InputArray src2 , int dtype , {OutputArray ? dist , OutputArray ? nidx , int normType = NORM_L2 , int K = 0 , InputArray ? mask , int update = 0 , bool crosscheck = false })
→ (Mat , Mat )
BatchDistance is a naive nearest neighbor finder.
batchDistanceAsync (InputArray src1 , InputArray src2 , int dtype , {OutputArray ? dist , OutputArray ? nidx , int normType = NORM_L2 , int K = 0 , InputArray ? mask , int update = 0 , bool crosscheck = false })
→ Future <(Mat , Mat ) >
BatchDistance is a naive nearest neighbor finder.
bitwiseAND (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Mat
BitwiseAnd computes bitwise conjunction of the two arrays (dst = src1 & src2).
Calculates the per-element bit-wise conjunction of two arrays
or an array and a scalar.
bitwiseANDAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Future <Mat >
BitwiseAnd computes bitwise conjunction of the two arrays (dst = src1 & src2).
Calculates the per-element bit-wise conjunction of two arrays
or an array and a scalar.
bitwiseNOT (InputArray src , {OutputArray ? dst , InputArray ? mask })
→ Mat
BitwiseNot inverts every bit of an array.
bitwiseNOTAsync (InputArray src , {OutputArray ? dst , InputArray ? mask })
→ Future <Mat >
BitwiseNot inverts every bit of an array.
bitwiseOR (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Mat
BitwiseOr calculates the per-element bit-wise disjunction of two arrays
or an array and a scalar.
bitwiseORAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Future <Mat >
BitwiseOr calculates the per-element bit-wise disjunction of two arrays
or an array and a scalar.
bitwiseXOR (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Mat
BitwiseXor calculates the per-element bit-wise "exclusive or" operation
on two arrays or an array and a scalar.
bitwiseXORAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask })
→ Future <Mat >
BitwiseXor calculates the per-element bit-wise "exclusive or" operation
on two arrays or an array and a scalar.
borderInterpolate (int p , int len , int borderType )
→ int
BorderInterpolate computes the source location of an extrapolated pixel.
borderInterpolateAsync (int p , int len , int borderType )
→ Future <int >
BorderInterpolate computes the source location of an extrapolated pixel.
calcCovarMatrix (InputArray samples , InputOutputArray mean , int flags , {OutputArray ? covar , int ctype = MatType.CV_64F })
→ (Mat , Mat )
CalcCovarMatrix calculates the covariance matrix of a set of vectors.
calcCovarMatrixAsync (InputArray samples , InputOutputArray mean , int flags , {OutputArray ? covar , int ctype = MatType.CV_64F })
→ Future <(Mat , Mat ) >
CalcCovarMatrix calculates the covariance matrix of a set of vectors.
cartToPolar (InputArray x , InputArray y , {OutputArray ? magnitude , OutputArray ? angle , bool angleInDegrees = false })
→ (Mat , Mat )
CartToPolar calculates the magnitude and angle of 2D vectors.
cartToPolarAsync (InputArray x , InputArray y , {OutputArray ? magnitude , OutputArray ? angle , bool angleInDegrees = false })
→ Future <(Mat , Mat ) >
CartToPolar calculates the magnitude and angle of 2D vectors.
checkRange (InputArray a , {bool quiet = true , double minVal = -CV_F64_MAX , double maxVal = CV_F64_MAX })
→ (bool , Point )
CheckRange checks every element of an input array for invalid values.
checkRangeAsync (InputArray a , {bool quiet = true , double minVal = -CV_F64_MAX , double maxVal = CV_F64_MAX })
→ Future <(bool , Point ) >
CheckRange checks every element of an input array for invalid values.
compare (InputArray src1 , InputArray src2 , int cmpop , {OutputArray ? dst })
→ Mat
Compare performs the per-element comparison of two arrays
or an array and scalar value.
compareAsync (InputArray src1 , InputArray src2 , int cmpop , {OutputArray ? dst })
→ Future <Mat >
Compare performs the per-element comparison of two arrays
or an array and scalar value.
completeSymm (InputOutputArray m , {bool lowerToUpper = false })
→ Mat
CompleteSymm copies the lower or the upper half of a square matrix to its another half.
completeSymmAsync (InputOutputArray m , {bool lowerToUpper = false })
→ Future <Mat >
CompleteSymm copies the lower or the upper half of a square matrix to its another half.
convertScaleAbs (InputArray src , {OutputArray ? dst , double alpha = 1 , double beta = 0 })
→ Mat
ConvertScaleAbs scales, calculates absolute values, and converts the result to 8-bit.
convertScaleAbsAsync (InputArray src , {OutputArray ? dst , double alpha = 1 , double beta = 0 })
→ Future <Mat >
ConvertScaleAbs scales, calculates absolute values, and converts the result to 8-bit.
copyMakeBorder (InputArray src , int top , int bottom , int left , int right , int borderType , {OutputArray ? dst , Scalar ? value })
→ Mat
CopyMakeBorder forms a border around an image (applies padding).
copyMakeBorderAsync (InputArray src , int top , int bottom , int left , int right , int borderType , {OutputArray ? dst , Scalar ? value })
→ Future <Mat >
CopyMakeBorder forms a border around an image (applies padding).
copyTo (InputArray src , InputArray dst , {InputArray ? mask })
→ Mat
CopyTo
copyToAsync (InputArray src , InputArray dst , {InputArray ? mask })
→ Future <Mat >
CopyTo
countNonZero (Mat src )
→ int
CountNonZero counts non-zero array elements.
cvAssert (bool condition , [String ? msg ])
→ void
cvRun (Pointer <CvStatus > func () )
→ void
cvRunArena <R > (R computation (Arena arena ), [Allocator wrappedAllocator = calloc , bool keep = false ])
→ R
cvRunAsync0 <T > (Pointer <CvStatus > func (CvCallback_0 callback ), void onComplete (Completer <T > completer ) )
→ Future <T >
cvRunAsync1 <T > (Pointer <CvStatus > func (CvCallback_1 callback ), void onComplete (Completer <T > completer , VoidPtr p ) )
→ Future <T >
cvRunAsync2 <T > (Pointer <CvStatus > func (CvCallback_2 callback ), void onComplete (Completer <T > completer , VoidPtr p , VoidPtr p1 ) )
→ Future <T >
cvRunAsync3 <T > (Pointer <CvStatus > func (CvCallback_3 callback ), void onComplete (Completer <T > completer , VoidPtr p , VoidPtr p1 , VoidPtr p2 ) )
→ Future <T >
cvRunAsync4 <T > (Pointer <CvStatus > func (CvCallback_4 callback ), void onComplete (Completer <T > completer , VoidPtr p , VoidPtr p1 , VoidPtr p2 , VoidPtr p3 ) )
→ Future <T >
cvRunAsync5 <T > (Pointer <CvStatus > func (CvCallback_5 callback ), void onComplete (Completer <T > completer , VoidPtr p , VoidPtr p1 , VoidPtr p2 , VoidPtr p3 , VoidPtr p4 ) )
→ Future <T >
dct (InputArray src , {OutputArray ? dst , int flags = 0 })
→ Mat
DCT performs a forward or inverse discrete Cosine transform of 1D or 2D array.
dctAsync (InputArray src , {OutputArray ? dst , int flags = 0 })
→ Future <Mat >
DCT performs a forward or inverse discrete Cosine transform of 1D or 2D array.
determinant (InputArray mtx )
→ double
Determinant returns the determinant of a square floating-point matrix.
determinantAsync (InputArray mtx )
→ Future <double >
Determinant returns the determinant of a square floating-point matrix.
dft (InputArray src , {OutputArray ? dst , int flags = 0 , int nonzeroRows = 0 })
→ Mat
DFT performs a forward or inverse Discrete Fourier Transform (DFT)
of a 1D or 2D floating-point array.
dftAsync (InputArray src , {OutputArray ? dst , int flags = 0 , int nonzeroRows = 0 })
→ Future <Mat >
DFT performs a forward or inverse Discrete Fourier Transform (DFT)
of a 1D or 2D floating-point array.
divide (InputArray src1 , InputArray src2 , {OutputArray ? dst , double scale = 1 , int dtype = -1 })
→ Mat
Divide performs the per-element division
on two arrays or an array and a scalar.
divideAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , double scale = 1 , int dtype = -1 })
→ Future <Mat >
Divide performs the per-element division
on two arrays or an array and a scalar.
eigen (InputArray src , {OutputArray ? eigenvalues , OutputArray ? eigenvectors })
→ (bool , Mat , Mat )
Eigen calculates eigenvalues and eigenvectors of a symmetric matrix.
eigenAsync (InputArray src , {OutputArray ? eigenvalues , OutputArray ? eigenvectors })
→ Future <(bool , Mat , Mat ) >
Eigen calculates eigenvalues and eigenvectors of a symmetric matrix.
eigenNonSymmetric (InputArray src , {OutputArray ? eigenvalues , OutputArray ? eigenvectors })
→ (Mat , Mat )
EigenNonSymmetric calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
eigenNonSymmetricAsync (InputArray src , {OutputArray ? eigenvalues , OutputArray ? eigenvectors })
→ Future <(Mat , Mat ) >
EigenNonSymmetric calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
exp (InputArray src , {OutputArray ? dst })
→ Mat
Exp calculates the exponent of every array element.
expAsync (InputArray src , {OutputArray ? dst })
→ Future <Mat >
Exp calculates the exponent of every array element.
ExtractChannel extracts a single channel from src (coi is 0-based index).
ExtractChannel extracts a single channel from src (coi is 0-based index).
findNonZero (InputArray src , {OutputArray ? idx })
→ Mat
FindNonZero returns the list of locations of non-zero pixels.
findNonZeroAsync (InputArray src , {OutputArray ? idx })
→ Future <Mat >
FindNonZero returns the list of locations of non-zero pixels.
flip (InputArray src , int flipCode , {OutputArray ? dst })
→ Mat
Flip flips a 2D array around horizontal(0), vertical(1), or both axes(-1).
flipAsync (InputArray src , int flipCode , {OutputArray ? dst })
→ Future <Mat >
Flip flips a 2D array around horizontal(0), vertical(1), or both axes(-1).
flipND (InputArray src , int axis , {OutputArray ? dst })
→ Mat
flipNDAsync (InputArray src , int axis , {OutputArray ? dst })
→ Future <Mat >
float16 (int w )
→ double
float16Inv (double x )
→ int
gemm (InputArray src1 , InputArray src2 , double alpha , InputArray src3 , double beta , {OutputArray ? dst , int flags = 0 })
→ Mat
Gemm performs generalized matrix multiplication.
gemmAsync (InputArray src1 , InputArray src2 , double alpha , InputArray src3 , double beta , {OutputArray ? dst , int flags = 0 })
→ Future <Mat >
Gemm performs generalized matrix multiplication.
getBuildInformation ()
→ String
Returns full configuration time cmake output.
getLogLevel ()
→ int
Gets the global logging level.
getNumThreads ()
→ int
Get the number of threads for OpenCV.
getOptimalDFTSize (int vecsize )
→ int
GetOptimalDFTSize returns the optimal Discrete Fourier Transform (DFT) size
for a given vector size.
getOptimalDFTSizeAsync (int vecsize )
→ Future <int >
GetOptimalDFTSize returns the optimal Discrete Fourier Transform (DFT) size
for a given vector size.
getTickCount ()
→ int
GetTickCount returns the number of ticks.
getTickFrequency ()
→ double
GetTickFrequency returns the number of ticks per second.
hasNonZero (InputArray src )
→ bool
Checks for the presence of at least one non-zero array element.
hconcat (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Mat
Hconcat applies horizontal concatenation to given matrices.
hconcatAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Future <Mat >
Hconcat applies horizontal concatenation to given matrices.
idct (InputArray src , {OutputArray ? dst , int flags = 0 })
→ Mat
IDCT calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
idctAsync (InputArray src , {OutputArray ? dst , int flags = 0 })
→ Future <Mat >
IDCT calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
idft (InputArray src , {OutputArray ? dst , int flags = 0 , int nonzeroRows = 0 })
→ Mat
IDFT calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
idftAsync (InputArray src , {OutputArray ? dst , int flags = 0 , int nonzeroRows = 0 })
→ Future <Mat >
IDFT calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
inRange (InputArray src , InputArray lowerb , InputArray upperb , {OutputArray ? dst })
→ Mat
InRange checks if array elements lie between the elements of two Mat arrays.
inRangeAsync (InputArray src , InputArray lowerb , InputArray upperb , {OutputArray ? dst })
→ Future <Mat >
InRange checks if array elements lie between the elements of two Mat arrays.
inRangebyScalar (InputArray src , Scalar lowerb , Scalar upperb , {OutputArray ? dst })
→ Mat
InRangeWithScalar checks if array elements lie between the elements of two Scalars
inRangebyScalarAsync (InputArray src , Scalar lowerb , Scalar upperb , {OutputArray ? dst })
→ Future <Mat >
InRangeWithScalar checks if array elements lie between the elements of two Scalars
insertChannel (InputArray src , InputOutputArray dst , int coi )
→ Mat
InsertChannel inserts a single channel to dst (coi is 0-based index)
(it replaces channel i with another in dst).
insertChannelAsync (InputArray src , InputOutputArray dst , int coi )
→ Future <Mat >
InsertChannel inserts a single channel to dst (coi is 0-based index)
(it replaces channel i with another in dst).
invert (InputArray src , {OutputArray ? dst , int flags = DECOMP_LU })
→ (double , Mat )
Invert finds the inverse or pseudo-inverse of a matrix.
invertAsync (InputArray src , {OutputArray ? dst , int flags = DECOMP_LU })
→ Future <(double , Mat ) >
Invert finds the inverse or pseudo-inverse of a matrix.
kmeans (InputArray data , int K , InputOutputArray bestLabels , (int , int , double ) criteria , int attempts , int flags , {OutputArray ? centers })
→ (double , Mat , Mat )
KMeans finds centers of clusters and groups input samples around the clusters.
kmeansAsync (InputArray data , int K , InputOutputArray bestLabels , (int , int , double ) criteria , int attempts , int flags , {OutputArray ? centers })
→ Future <(double , Mat , Mat ) >
KMeans finds centers of clusters and groups input samples around the clusters.
kmeansByPoints (VecPoint2f pts , int K , InputOutputArray bestLabels , (int , int , double ) criteria , int attempts , int flags , {OutputArray ? centers })
→ (double , Mat , Mat )
KMeansPoints finds centers of clusters and groups input samples around the clusters.
kmeansByPointsAsync (VecPoint2f pts , int K , InputOutputArray bestLabels , (int , int , double ) criteria , int attempts , int flags , {OutputArray ? centers })
→ Future <(double , Mat , Mat ) >
KMeansPoints finds centers of clusters and groups input samples around the clusters.
log (InputArray src , {OutputArray ? dst })
→ Mat
Log calculates the natural logarithm of every array element.
logAsync (InputArray src , {OutputArray ? dst })
→ Future <Mat >
Log calculates the natural logarithm of every array element.
LUT (InputArray src , InputArray lut , {OutputArray ? dst })
→ Mat
Performs a look-up table transform of an array. Support CV_8U, CV_8S, CV_16U, CV_16S
LUTAsync (InputArray src , InputArray lut , {OutputArray ? dst })
→ Future <Mat >
Performs a look-up table transform of an array. Support CV_8U, CV_8S, CV_16U, CV_16S
magnitude (InputArray x , InputArray y , {OutputArray ? magnitude })
→ Mat
Magnitude calculates the magnitude of 2D vectors.
magnitudeAsync (InputArray x , InputArray y , {OutputArray ? magnitude })
→ Future <Mat >
Magnitude calculates the magnitude of 2D vectors.
max (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Mat
Max calculates per-element maximum of two arrays or an array and a scalar.
maxAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Future <Mat >
Max calculates per-element maximum of two arrays or an array and a scalar.
mean (InputArray src , {InputArray ? mask })
→ Scalar
mean
meanStdDev (InputArray src , {InputArray ? mask })
→ (Scalar , Scalar )
MeanStdDev calculates a mean and standard deviation of array elements.
meanStdDevAsync (InputArray src , {InputArray ? mask })
→ Future <(Scalar , Scalar ) >
MeanStdDev calculates a mean and standard deviation of array elements.
merge (VecMat mv , {OutputArray ? dst })
→ Mat
Merge creates one multi-channel array out of several single-channel ones.
mergeAsync (VecMat mv , {OutputArray ? dst })
→ Future <Mat >
Merge creates one multi-channel array out of several single-channel ones.
min (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Mat
Min calculates per-element minimum of two arrays or an array and a scalar.
minAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Future <Mat >
Min calculates per-element minimum of two arrays or an array and a scalar.
minMaxIdx (InputArray src , {InputArray ? mask })
→ (double , double , int , int )
MinMaxIdx finds the global minimum and maximum in an array.
minMaxIdxAsync (InputArray src , {InputArray ? mask })
→ Future <(double , double , int , int ) >
MinMaxIdx finds the global minimum and maximum in an array.
minMaxLoc (InputArray src , {InputArray ? mask })
→ (double , double , Point , Point )
MinMaxLoc finds the global minimum and maximum in an array.
minMaxLocAsync (InputArray src , {InputArray ? mask })
→ Future <(double , double , Point , Point ) >
MinMaxLoc finds the global minimum and maximum in an array.
mixChannels (VecMat src , VecMat dst , VecI32 fromTo )
→ VecMat
Copies specified channels from input arrays to the specified channels of output arrays.
mixChannelsAsync (VecMat src , VecMat dst , VecI32 fromTo )
→ Future <VecMat >
Copies specified channels from input arrays to the specified channels of output arrays.
mulSpectrums (InputArray a , InputArray b , int flags , {OutputArray ? c , bool conjB = false })
→ Mat
Mulspectrums performs the per-element multiplication of two Fourier spectrums.
mulSpectrumsAsync (InputArray a , InputArray b , int flags , {OutputArray ? c , bool conjB = false })
→ Future <Mat >
Mulspectrums performs the per-element multiplication of two Fourier spectrums.
multiply (InputArray src1 , InputArray src2 , {OutputArray ? dst , double scale = 1 , int dtype = -1 })
→ Mat
Multiply calculates the per-element scaled product of two arrays.
Both input arrays must be of the same size and the same type.
multiplyAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , double scale = 1 , int dtype = -1 })
→ Future <Mat >
Multiply calculates the per-element scaled product of two arrays.
Both input arrays must be of the same size and the same type.
mulTransposed (InputArray src , OutputArray dst , bool aTa , {InputArray ? delta , double scale = 1 , int dtype = -1 })
→ Mat
mulTransposed
mulTransposedAsync (InputArray src , OutputArray dst , bool aTa , {InputArray ? delta , double scale = 1 , int dtype = -1 })
→ Future <Mat >
mulTransposed
norm (InputArray src1 , {int normType = NORM_L2 , InputArray ? mask })
→ double
Norm calculates the absolute norm of an array.
norm1 (InputArray src1 , InputArray src2 , {int normType = NORM_L2 , InputArray ? mask })
→ double
Norm calculates the absolute difference/relative norm of two arrays.
norm1Async (InputArray src1 , InputArray src2 , {int normType = NORM_L2 , InputArray ? mask })
→ Future <double >
Norm calculates the absolute difference/relative norm of two arrays.
normalize (InputArray src , InputOutputArray dst , {double alpha = 1 , double beta = 0 , int normType = NORM_L2 , int dtype = -1 , InputArray ? mask })
→ Mat
Normalize normalizes the norm or value range of an array.
normalizeAsync (InputArray src , InputOutputArray dst , {double alpha = 1 , double beta = 0 , int normType = NORM_L2 , int dtype = -1 , InputArray ? mask })
→ Future <Mat >
Normalize normalizes the norm or value range of an array.
normAsync (InputArray src1 , {int normType = NORM_L2 , InputArray ? mask })
→ Future <double >
Norm calculates the absolute norm of an array.
OcvFinalizer <T extends NativeType > (NativeFinalizerFunctionT <T > func )
→ NativeFinalizer
openCvVersion ()
→ String
get version
patchNaNs (InputArray a , double val )
→ Mat
patchNaNs
PCABackProject (InputArray data , InputArray mean , InputArray eigenvectors , {OutputArray ? dst })
→ Mat
https://docs.opencv.org/4.x/d2/de8/group__core__array.html#gab26049f30ee8e94f7d69d82c124faafc
PCABackProjectAsync (InputArray data , InputArray mean , InputArray eigenvectors , {OutputArray ? dst })
→ Future <Mat >
PCACompute (InputArray data , InputOutputArray mean , {OutputArray ? eigenvectors , OutputArray ? eigenvalues , int maxComponents = 0 })
→ (Mat , Mat , Mat )
PCACompute performs PCA.
PCACompute1 (InputArray data , InputOutputArray mean , double retainedVariance , {OutputArray ? eigenvectors , OutputArray ? eigenvalues })
→ (Mat , Mat , Mat )
PCACompute1Async (InputArray data , InputOutputArray mean , double retainedVariance , {OutputArray ? eigenvectors , OutputArray ? eigenvalues })
→ Future <(Mat , Mat , Mat ) >
PCAComputeAsync (InputArray data , InputOutputArray mean , {OutputArray ? eigenvectors , OutputArray ? eigenvalues , int maxComponents = 0 })
→ Future <(Mat , Mat , Mat ) >
PCACompute performs PCA.
PCAProject (Mat data , Mat mean , Mat eigenvectors , {OutputArray ? result })
→ (Mat , Mat )
PCAProjectAsync (Mat data , Mat mean , Mat eigenvectors , {OutputArray ? result })
→ Future <(Mat , Mat ) >
perspectiveTransform (InputArray src , InputArray m , {OutputArray ? dst })
→ Mat
PerspectiveTransform performs the perspective matrix transformation of vectors.
perspectiveTransformAsync (InputArray src , InputArray m , {OutputArray ? dst })
→ Future <Mat >
PerspectiveTransform performs the perspective matrix transformation of vectors.
phase (InputArray x , InputArray y , {OutputArray ? angle , bool angleInDegrees = false })
→ Mat
Phase calculates the rotation angle of 2D vectors.
phaseAsync (InputArray x , InputArray y , {OutputArray ? angle , bool angleInDegrees = false })
→ Future <Mat >
Phase calculates the rotation angle of 2D vectors.
polarToCart (InputArray magnitude , InputArray angle , {OutputArray ? x , OutputArray ? y , bool angleInDegrees = false })
→ (Mat , Mat )
PolatToCart calculates x and y coordinates of 2D vectors from their magnitude and angle.
polarToCartAsync (InputArray magnitude , InputArray angle , {OutputArray ? x , OutputArray ? y , bool angleInDegrees = false })
→ Future <(Mat , Mat ) >
PolatToCart calculates x and y coordinates of 2D vectors from their magnitude and angle.
pow (InputArray src , double power , {OutputArray ? dst })
→ Mat
Pow raises every array element to a power.
powAsync (InputArray src , double power , {OutputArray ? dst })
→ Future <Mat >
Pow raises every array element to a power.
PSNR (InputArray src1 , InputArray src2 , {double R = 255.0 })
→ double
Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
PSNRAsync (InputArray src1 , InputArray src2 , {double R = 255.0 })
→ Future <double >
Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
randn (InputOutputArray dst , Scalar mean , Scalar stddev )
→ Mat
RandN Fills the array with normally distributed random numbers.
randnAsync (InputOutputArray dst , Scalar mean , Scalar stddev )
→ Future <Mat >
RandN Fills the array with normally distributed random numbers.
randShuffle (InputOutputArray dst , {double iterFactor = 1 , Rng ? rng })
→ Mat
RandShuffle Shuffles the array elements randomly.
randShuffleAsync (InputOutputArray dst , {double iterFactor = 1 , Rng ? rng })
→ Future <Mat >
RandShuffle Shuffles the array elements randomly.
randu (InputOutputArray dst , Scalar low , Scalar high )
→ Mat
RandU Generates a single uniformly-distributed random
number or an array of random numbers.
randuAsync (InputOutputArray dst , Scalar low , Scalar high )
→ Future <Mat >
RandU Generates a single uniformly-distributed random
number or an array of random numbers.
reduce (InputArray src , int dim , int rtype , {OutputArray ? dst , int dtype = -1 })
→ Mat
Reduce reduces a matrix to a vector.
reduceArgMax (InputArray src , int axis , {OutputArray ? dst , bool lastIndex = false })
→ Mat
Finds indices of max elements along provided axis.
reduceArgMaxAsync (InputArray src , int axis , {OutputArray ? dst , bool lastIndex = false })
→ Future <Mat >
Finds indices of max elements along provided axis.
reduceArgMin (InputArray src , int axis , {OutputArray ? dst , bool lastIndex = false })
→ Mat
Finds indices of min elements along provided axis.
reduceArgMinAsync (InputArray src , int axis , {OutputArray ? dst , bool lastIndex = false })
→ Future <Mat >
Finds indices of min elements along provided axis.
reduceAsync (InputArray src , int dim , int rtype , {OutputArray ? dst , int dtype = -1 })
→ Future <Mat >
Reduce reduces a matrix to a vector.
repeat (InputArray src , int ny , int nx , {OutputArray ? dst })
→ Mat
Repeat fills the output array with repeated copies of the input array.
repeatAsync (InputArray src , int ny , int nx , {OutputArray ? dst })
→ Future <Mat >
Repeat fills the output array with repeated copies of the input array.
rotate (InputArray src , int rotateCode , {OutputArray ? dst })
→ Mat
Rotate rotates a 2D array in multiples of 90 degrees
rotateAsync (InputArray src , int rotateCode , {OutputArray ? dst })
→ Future <Mat >
Rotate rotates a 2D array in multiples of 90 degrees
scaleAdd (InputArray src1 , double alpha , InputArray src2 , {OutputArray ? dst })
→ Mat
Calculates the sum of a scaled array and another array.
scaleAddAsync (InputArray src1 , double alpha , InputArray src2 , {OutputArray ? dst })
→ Future <Mat >
Calculates the sum of a scaled array and another array.
setIdentity (InputOutputArray mtx , {Scalar ? s })
→ Mat
SetIdentity initializes a scaled identity matrix.
For further details, please see:
setIdentityAsync (InputOutputArray mtx , {Scalar ? s })
→ Future <Mat >
SetIdentity initializes a scaled identity matrix.
For further details, please see:
setLogLevel (int logLevel )
→ void
Sets the global logging level.
setNumThreads (int n )
→ void
Set the number of threads for OpenCV.
solve (InputArray src1 , InputArray src2 , {OutputArray ? dst , int flags = DECOMP_LU })
→ (bool , Mat )
Solve solves one or more linear systems or least-squares problems.
solveAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , int flags = DECOMP_LU })
→ Future <(bool , Mat ) >
Solve solves one or more linear systems or least-squares problems.
solveCubic (InputArray coeffs , {OutputArray ? roots })
→ (int , Mat )
SolveCubic finds the real roots of a cubic equation.
solveCubicAsync (InputArray coeffs , {OutputArray ? roots })
→ Future <(int , Mat ) >
SolveCubic finds the real roots of a cubic equation.
solvePoly (InputArray coeffs , {OutputArray ? roots , int maxIters = 300 })
→ (double , Mat )
SolvePoly finds the real or complex roots of a polynomial equation.
solvePolyAsync (InputArray coeffs , {OutputArray ? roots , int maxIters = 300 })
→ Future <(double , Mat ) >
SolvePoly finds the real or complex roots of a polynomial equation.
sort (InputArray src , int flags , {OutputArray ? dst })
→ Mat
Sort sorts each row or each column of a matrix.
sortAsync (InputArray src , int flags , {OutputArray ? dst })
→ Future <Mat >
Sort sorts each row or each column of a matrix.
sortIdx (InputArray src , int flags , {OutputArray ? dst })
→ Mat
SortIdx sorts each row or each column of a matrix.
Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array
sortIdxAsync (InputArray src , int flags , {OutputArray ? dst })
→ Future <Mat >
SortIdx sorts each row or each column of a matrix.
Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array
split (InputArray m )
→ VecMat
Split creates an array of single channel images from a multi-channel image
Created images should be closed manualy to avoid memory leaks.
splitAsync (InputArray m )
→ Future <VecMat >
Split creates an array of single channel images from a multi-channel image
Created images should be closed manualy to avoid memory leaks.
sqrt (Mat src , {Mat ? dst })
→ Mat
Calculates a square root of array elements.
sqrtAsync (Mat src , {Mat ? dst })
→ Future <Mat >
Calculates a square root of array elements.
subtract (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask , int dtype = -1 })
→ Mat
Subtract calculates the per-element subtraction of two arrays or an array and a scalar.
subtractAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst , InputArray ? mask , int dtype = -1 })
→ Future <Mat >
Subtract calculates the per-element subtraction of two arrays or an array and a scalar.
sum (Mat src )
→ Scalar
Calculates the sum of array elements.
sumAsync (Mat src )
→ Future <Scalar >
Calculates the sum of array elements.
SVBackSubst (InputArray w , InputArray u , InputArray vh , InputArray rhs , {OutputArray ? dst })
→ Mat
SVBackSubst
SVDecomp (InputArray src , {OutputArray ? w , OutputArray ? u , OutputArray ? vt , int flags = 0 })
→ (Mat , Mat , Mat )
SVDecomp
theRNG ()
→ Rng
TheRNG Returns the default random number generator.
throwIfFailed (Pointer <CvStatus > s )
→ void
trace (InputArray mtx )
→ Scalar
Trace returns the trace of a matrix.
traceAsync (InputArray mtx )
→ Future <Scalar >
Trace returns the trace of a matrix.
transform (InputArray src , InputArray m , {OutputArray ? dst })
→ Mat
Transform performs the matrix transformation of every array element.
transformAsync (InputArray src , InputArray m , {OutputArray ? dst })
→ Future <Mat >
Transform performs the matrix transformation of every array element.
transpose (InputArray src , {OutputArray ? dst })
→ Mat
Transpose transposes a matrix.
transposeAsync (InputArray src , {OutputArray ? dst })
→ Future <Mat >
Transpose transposes a matrix.
transposeND (InputArray src , List <int > order , {OutputArray ? dst })
→ Mat
Transpose for n-dimensional matrices.
transposeNDAsync (InputArray src , List <int > order , {OutputArray ? dst })
→ Future <Mat >
Transpose for n-dimensional matrices.
vconcat (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Mat
Vconcat applies vertical concatenation to given matrices.
vconcatAsync (InputArray src1 , InputArray src2 , {OutputArray ? dst })
→ Future <Mat >
Vconcat applies vertical concatenation to given matrices.