dartcv library
OpenCV bindings for Dart.
dartcv is for pure dart only, for flutter, use opencv_dart
Classes
- AgastFeatureDetector
- AgastFeatureDetector is a wrapper around the cv::AgastFeatureDetector.
- AKAZE
- AKAZE is a wrapper around the cv::AKAZE algorithm.
- AlignMTB
- AlignMTB for converts images to median threshold bitmaps. of type AlignMTB converts images to median threshold bitmaps (1 for pixels brighter than median luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations. For further details, please see: https://docs.opencv.org/master/d6/df5/group__photo__hdr.html https://docs.opencv.org/master/d7/db6/classcv_1_1AlignMTB.html https://docs.opencv.org/master/d6/df5/group__photo__hdr.html#ga2f1fafc885a5d79dbfb3542e08db0244
- ArucoDetector
- ArucoDetectorParameters
- ArucoDictionary
- AsyncArray
- AverageHash
- AverageHash is implementation of the AverageHash algorithm.
- BackgroundSubtractorKNN
- BackgroundSubtractorMOG2
- BFMatcher
- BFMatcher is a wrapper around the cv::BFMatcher.
- BlockMeanHash
- BlockMeanHash is implementation of the BlockMeanHash algorithm.
- BRISK
- BRISK is a wrapper around the cv::BRISK algorithm.
- CascadeClassifier
- CLAHE
- ColorMomentHash
- ColorMomentHash is implementation of the ColorMomentHash algorithm.
-
CvObject<
T extends NativeType> -
CvStruct<
T extends Struct> -
CvVec<
T extends Struct> - DMatch
- EdgeBoxes
- https://docs.opencv.org/4.x/dd/d65/classcv_1_1ximgproc_1_1EdgeBoxes.html#details
- EdgeDrawing
- EdgeDrawingParams
- FaceDetectorYN
- DNN-based face detector.
- FaceRecognizerSF
- DNN-based face recognizer.
- FastFeatureDetector
- FastFeatureDetector is a wrapper around the cv::FastFeatureDetector.
- Fisheye
- FlannBasedMatcher
- FlannBasedMatcher is a wrapper around the cv::FlannBasedMatcher.
- Float16List
- GFTTDetector
- GFTTDetector is a wrapper around the cv::GFTTDetector.
- GraphSegmentation
- https://docs.opencv.org/4.x/dd/d19/classcv_1_1ximgproc_1_1segmentation_1_1GraphSegmentation.html
- HOGDescriptor
-
ICvStruct<
T extends Struct> - ImgHashBase
- KalmanFilter
- KalmanFilter implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter. However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality.
- KAZE
- KAZE is a wrapper around the cv::KAZE.
- KeyPoint
- Layer
- Layer is a wrapper around the cv::dnn::Layer algorithm.
- MarrHildrethHash
- MarrHildrethHash is implementation of the MarrHildrethHash algorithm.
- Mat
- MergeMertens
- MergeMertens algorithm merge the ldr image should result in a HDR image. For further details, please see: https://docs.opencv.org/master/d6/df5/group__photo__hdr.html https://docs.opencv.org/master/d7/dd6/classcv_1_1MergeMertens.html https://docs.opencv.org/master/d6/df5/group__photo__hdr.html#ga79d59aa3cb3a7c664e59a4b5acc1ccb6
- Moments
- struct returned by cv::moments
- MSER
- MSER is a wrapper around the cv::MSER.
- Net
- Net allows you to create and manipulate comprehensive artificial neural networks.
- ORB
- ORB is a wrapper around the cv::ORB.
- PHash
- PHash is implementation of the PHash algorithm.
- Point
- Point2d
- Point2f
- Point3f
- Point3i
- QRCodeDetector
- QualityBRISQUE
- QualityGMSD
- QualityMSE
- QualityPSNR
- QualitySSIM
- RadialVarianceHash
- RadialVarianceHash is implementation of the RadialVarianceHash algorithm.
- Rect
- Rect2f
- RFFeatureGetter
- Rng
- RotatedRect
- Scalar
- SIFT
- SIFT is a wrapper around the cv::SIFT.
- SimpleBlobDetector
- SimpleBlobDetector is a wrapper around the cv::SimpleBlobDetector.
- SimpleBlobDetectorParams
- Size
- Size2f
- Stitcher
- High level image stitcher.
- StructuredEdgeDetection
- https://docs.opencv.org/4.x/d8/d54/classcv_1_1ximgproc_1_1StructuredEdgeDetection.html#details
- Subdiv2D
- SVD
- SVDCompute decomposes matrix and stores the results to user-provided matrices
- TermCriteria
- TermCriteria is the criteria for iterative algorithms.
- TrackerMIL
- Tracker is the base interface for object tracking.
- UsacParams
-
Vec<
N extends Struct, T> - Vec2b
- uchar
- Vec2d
- double
- Vec2f
- float
- Vec2i
- int
- Vec2s
- short
- Vec2w
- ushort
- Vec3b
- uchar
- Vec3d
- double
- Vec3f
- float
- Vec3i
- int
- Vec3s
- short
- Vec3w
- ushort
- Vec4b
- uchar
- Vec4d
- double
- Vec4f
- float
- Vec4i
- int
- Vec4s
- short
- Vec4w
- ushort
- Vec6d
- double
- Vec6f
- float
- Vec6i
- int
- Vec8i
- int
- VecChar
- VecCharIterator
- VecDMatch
- VecDMatchIterator
- VecF16
- VecF16Iterator
- VecF32
- VecF32Iterator
- VecF64
- VecF64Iterator
- VecI16
- VecI16Iterator
- VecI32
- VecI32Iterator
-
VecIterator<
T> - VecKeyPoint
- VecKeyPointIterator
- VecMat
- VecMatIterator
- VecPoint
- VecPoint2f
- VecPoint2fIterator
- VecPoint3f
- VecPoint3fIterator
- VecPoint3i
- VecPoint3iIterator
- VecPointIterator
- VecRect
- VecRect2f
- VecRect2fIterator
- VecRectIterator
- VecU16
- VecU16Iterator
- VecUChar
- VecUCharIterator
-
VecUnmodifible<
N extends Struct, T> - VecVec4f
- VecVec4fIterator
- VecVec4i
- VecVec4iIterator
- VecVec6f
- VecVec6fIterator
- VecVecChar
- VecVecCharIterator
- VecVecDMatch
- VecVecDMatchIterator
- VecVecPoint
- VecVecPoint2f
- VecVecPoint2fIterator
- VecVecPoint3f
- VecVecPoint3fIterator
- VecVecPointIterator
- VideoCapture
- VideoWriter
- WBDetector
- WaldBoost detector.
- WeChatQRCode
- ximgproc
- ximgproc_rl
Enums
- DrawMatchesFlag
- FastFeatureDetectorType
- ORBScoreType
- PredefinedDictionaryType
- StitcherMode
- https://docs.opencv.org/4.x/d2/d8d/classcv_1_1Stitcher.html#a114713924ec05a0309f4df7e918c0324
- StitcherStatus
- https://docs.opencv.org/4.x/d2/d8d/classcv_1_1Stitcher.html#a507409ce9435dd89857469d12ec06b45
- VideoAccelerationType
- @brief Video Acceleration type
- WaveCorrectKind
- https://docs.opencv.org/4.x/d7/d74/group__stitching__rotation.html#ga83b24d4c3e93584986a56d9e43b9cf7f
- WindowFlag
- WindowPropertyFlags
Mixins
Extensions
- AgastFeatureDetectorAsync on AgastFeatureDetector
- AKAZEAsync on AKAZE
- AlignMTBAsync on AlignMTB
- ArucoDetectorAsync on ArucoDetector
- BackgroundSubtractorKNNAsync on BackgroundSubtractorKNN
- BackgroundSubtractorMOG2Async on BackgroundSubtractorMOG2
- BFMatcherAsync on BFMatcher
- BRISKAsync on BRISK
- CascadeClassifierAsync on CascadeClassifier
- DoubleFp16Extension on double
- FaceDetectorYNAsync on FaceDetectorYN
- FaceRecognizerSFAsync on FaceRecognizerSF
- FastFeatureDetectorAsync on FastFeatureDetector
- FlannBasedMatcherAsync on FlannBasedMatcher
- GFTTDetectorAsync on GFTTDetector
- HOGDescriptorAsync on HOGDescriptor
- IntFp16Extension on int
- KalmanFilterAsync on KalmanFilter
- KalmanFilter implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter. However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality.
- KAZEAsync on KAZE
-
ListDMatchExtension
on List<
DMatch> -
ListFloatExtension
on List<
double> -
ListKeyPointExtension
on List<
KeyPoint> -
ListListCharExtension
on List<
List< int> > -
ListListDMatchExtension
on List<
List< DMatch> > -
ListListPoint2fExtension
on List<
List< Point2f> > -
ListListPoint3fExtension
on List<
List< Point3f> > -
ListListPointExtension
on List<
List< Point> > -
ListMatExtension
on List<
Mat> -
ListPoint2fExtension
on List<
Point2f> -
ListPoint3fExtension
on List<
Point3f> -
ListPoint3iExtension
on List<
Point3i> -
ListPointExtension
on List<
Point> -
ListRect2fExtension
on List<
Rect2f> -
ListRectExtension
on List<
Rect> -
ListStringExtension
on List<
String> -
ListUCharExtension
on List<
int> - MatAsync on Mat
- MergeMertensAsync on MergeMertens
- MSERAsync on MSER
- NetAsync on Net
- ORBAsync on ORB
- Point2fRecordExtension on (double, double)
- Point3fRecordExtension on (double, double, double)
-
PointerCharExtension
on Pointer<
Char> -
PointerUint16Extension
on Pointer<
Uint16> - PointRecordExtension on (int, int)
- QRCodeDetectorAsync on QRCodeDetector
- RecordScalarExtension on (double, double, double, double)
- RecordSize2fExtension1 on (double, double)
- RecordSizeExtension1 on (int, int)
- SIFTAsync on SIFT
- SimpleBlobDetectorAsync on SimpleBlobDetector
- StitcherAsync on Stitcher
- StringVecExtension on String
- Subdiv2DAsync on Subdiv2D
- Async version of Subdiv2D
- TermCriteriaExtension on (int, int, double)
- TrackerMILAsync on TrackerMIL
- Tracker is the base interface for object tracking.
- VecPointExtension on VecPoint
-
VecVec4fExtension
on List<
Vec4f> -
VecVec4iExtension
on List<
Vec4i> -
VecVec6fExtension
on List<
Vec6f> - VideoCaptureAsync on VideoCapture
- VideoWriterAsync on VideoWriter
Constants
- ADAPTIVE_THRESH_GAUSSIAN_C → const int
- ADAPTIVE_THRESH_MEAN_C → const int
- BLOCK_MEAN_HASH_MODE_0 → const int
- !< use fewer block and generate 16*16/8 uchar hash value
- BLOCK_MEAN_HASH_MODE_1 → const int
- !< use block blocks(step sizes/2), generate 31*31/8 + 1 uchar hash value
- BORDER_CONSTANT → const int
- BORDER_DEFAULT → const int
- BORDER_ISOLATED → const int
- BORDER_REFLECT → const int
- BORDER_REFLECT101 → const int
- BORDER_REFLECT_101 → const int
- BORDER_REPLICATE → const int
- BORDER_TRANSPARENT → const int
- BORDER_WRAP → const int
- CALIB_CB_ACCURACY → const int
- CALIB_CB_ADAPTIVE_THRESH → const int
- CALIB_CB_ASYMMETRIC_GRID → const int
- CALIB_CB_CLUSTERING → const int
- CALIB_CB_EXHAUSTIVE → const int
- CALIB_CB_FAST_CHECK → const int
- CALIB_CB_FILTER_QUADS → const int
- CALIB_CB_LARGER → const int
- CALIB_CB_MARKER → const int
- CALIB_CB_NORMALIZE_IMAGE → const int
- CALIB_CB_PLAIN → const int
- CALIB_CB_SYMMETRIC_GRID → const int
- CALIB_FIX_ASPECT_RATIO → const int
- CALIB_FIX_FOCAL_LENGTH → const int
- CALIB_FIX_INTRINSIC → const int
- CALIB_FIX_K1 → const int
- CALIB_FIX_K2 → const int
- CALIB_FIX_K3 → const int
- CALIB_FIX_K4 → const int
- CALIB_FIX_K5 → const int
- CALIB_FIX_K6 → const int
- CALIB_FIX_PRINCIPAL_POINT → const int
- CALIB_FIX_S1_S2_S3_S4 → const int
- CALIB_FIX_TANGENT_DIST → const int
- CALIB_FIX_TAUX_TAUY → const int
- CALIB_NINTRINSIC → const int
- CALIB_RATIONAL_MODEL → const int
- CALIB_SAME_FOCAL_LENGTH → const int
- CALIB_THIN_PRISM_MODEL → const int
- CALIB_TILTED_MODEL → const int
- CALIB_USE_EXTRINSIC_GUESS → const int
- CALIB_USE_INTRINSIC_GUESS → const int
- CALIB_USE_LU → const int
- CALIB_USE_QR → const int
- CALIB_ZERO_DISPARITY → const int
- CALIB_ZERO_TANGENT_DIST → const int
- CAP_ANDROID → const int
- CAP_ANY → const int
- CAP_ARAVIS → const int
- CAP_AVFOUNDATION → const int
- CAP_CMU1394 → const int
- CAP_DC1394 → const int
- CAP_DSHOW → const int
- CAP_FFMPEG → const int
- CAP_FIREWARE → const int
- CAP_FIREWIRE → const int
- CAP_GIGANETIX → const int
- CAP_GPHOTO2 → const int
- CAP_GSTREAMER → const int
- CAP_IEEE1394 → const int
- CAP_IMAGES → const int
- CAP_INTEL_MFX → const int
- CAP_INTELPERC → const int
- CAP_INTELPERC_DEPTH_GENERATOR → const int
- CAP_INTELPERC_DEPTH_MAP → const int
- CAP_INTELPERC_GENERATORS_MASK → const int
- CAP_INTELPERC_IMAGE → const int
- CAP_INTELPERC_IMAGE_GENERATOR → const int
- CAP_INTELPERC_IR_GENERATOR → const int
- CAP_INTELPERC_IR_MAP → const int
- CAP_INTELPERC_UVDEPTH_MAP → const int
- CAP_MSMF → const int
- CAP_OBSENSOR → const int
- CAP_OBSENSOR_BGR_IMAGE → const int
- CAP_OBSENSOR_DEPTH_GENERATOR → const int
- CAP_OBSENSOR_DEPTH_MAP → const int
- CAP_OBSENSOR_GENERATORS_MASK → const int
- CAP_OBSENSOR_IMAGE_GENERATOR → const int
- CAP_OBSENSOR_IR_GENERATOR → const int
- CAP_OBSENSOR_IR_IMAGE → const int
- CAP_OPENCV_MJPEG → const int
- CAP_OPENNI → const int
- CAP_OPENNI2 → const int
- CAP_OPENNI2_ASTRA → const int
- CAP_OPENNI2_ASUS → const int
- CAP_OPENNI_ASUS → const int
- CAP_OPENNI_BGR_IMAGE → const int
- CAP_OPENNI_DEPTH_GENERATOR → const int
- CAP_OPENNI_DEPTH_GENERATOR_BASELINE → const int
- CAP_OPENNI_DEPTH_GENERATOR_FOCAL_LENGTH → const int
- CAP_OPENNI_DEPTH_GENERATOR_PRESENT → const int
- CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION → const int
- CAP_OPENNI_DEPTH_GENERATOR_REGISTRATION_ON → const int
- CAP_OPENNI_DEPTH_MAP → const int
- CAP_OPENNI_DISPARITY_MAP → const int
- CAP_OPENNI_DISPARITY_MAP_32F → const int
- CAP_OPENNI_GENERATORS_MASK → const int
- CAP_OPENNI_GRAY_IMAGE → const int
- CAP_OPENNI_IMAGE_GENERATOR → const int
- CAP_OPENNI_IMAGE_GENERATOR_OUTPUT_MODE → const int
- CAP_OPENNI_IMAGE_GENERATOR_PRESENT → const int
- CAP_OPENNI_IR_GENERATOR → const int
- CAP_OPENNI_IR_GENERATOR_PRESENT → const int
- CAP_OPENNI_IR_IMAGE → const int
- CAP_OPENNI_POINT_CLOUD_MAP → const int
- CAP_OPENNI_QVGA_30HZ → const int
- CAP_OPENNI_QVGA_60HZ → const int
- CAP_OPENNI_SXGA_15HZ → const int
- CAP_OPENNI_SXGA_30HZ → const int
- CAP_OPENNI_VALID_DEPTH_MASK → const int
- CAP_OPENNI_VGA_30HZ → const int
- CAP_PROP_APERTURE → const int
- CAP_PROP_ARAVIS_AUTOTRIGGER → const int
- CAP_PROP_AUDIO_BASE_INDEX → const int
- CAP_PROP_AUDIO_DATA_DEPTH → const int
- CAP_PROP_AUDIO_POS → const int
- CAP_PROP_AUDIO_SAMPLES_PER_SECOND → const int
- CAP_PROP_AUDIO_SHIFT_NSEC → const int
- CAP_PROP_AUDIO_STREAM → const int
- CAP_PROP_AUDIO_SYNCHRONIZE → const int
- CAP_PROP_AUDIO_TOTAL_CHANNELS → const int
- CAP_PROP_AUDIO_TOTAL_STREAMS → const int
- CAP_PROP_AUTO_EXPOSURE → const int
- CAP_PROP_AUTO_WB → const int
- CAP_PROP_AUTOFOCUS → const int
- CAP_PROP_BACKEND → const int
- CAP_PROP_BACKLIGHT → const int
- CAP_PROP_BITRATE → const int
- CAP_PROP_BRIGHTNESS → const int
- CAP_PROP_BUFFERSIZE → const int
- CAP_PROP_CHANNEL → const int
- CAP_PROP_CODEC_EXTRADATA_INDEX → const int
- CAP_PROP_CODEC_PIXEL_FORMAT → const int
- CAP_PROP_CONTRAST → const int
- CAP_PROP_CONVERT_RGB → const int
- CAP_PROP_DC1394_MAX → const int
- CAP_PROP_DC1394_MODE_AUTO → const int
- CAP_PROP_DC1394_MODE_MANUAL → const int
- CAP_PROP_DC1394_MODE_ONE_PUSH_AUTO → const int
- CAP_PROP_DC1394_OFF → const int
- CAP_PROP_EXPOSURE → const int
- CAP_PROP_EXPOSUREPROGRAM → const int
- CAP_PROP_FOCUS → const int
- CAP_PROP_FORMAT → const int
- CAP_PROP_FOURCC → const int
- CAP_PROP_FPS → const int
- CAP_PROP_FRAME_COUNT → const int
- CAP_PROP_FRAME_HEIGHT → const int
- CAP_PROP_FRAME_TYPE → const int
- CAP_PROP_FRAME_WIDTH → const int
- CAP_PROP_GAIN → const int
- CAP_PROP_GAMMA → const int
- CAP_PROP_GIGA_FRAME_HEIGH_MAX → const int
- CAP_PROP_GIGA_FRAME_OFFSET_X → const int
- CAP_PROP_GIGA_FRAME_OFFSET_Y → const int
- CAP_PROP_GIGA_FRAME_SENS_HEIGH → const int
- CAP_PROP_GIGA_FRAME_SENS_WIDTH → const int
- CAP_PROP_GIGA_FRAME_WIDTH_MAX → const int
- CAP_PROP_GPHOTO2_COLLECT_MSGS → const int
- CAP_PROP_GPHOTO2_FLUSH_MSGS → const int
- CAP_PROP_GPHOTO2_PREVIEW → const int
- CAP_PROP_GPHOTO2_RELOAD_CONFIG → const int
- CAP_PROP_GPHOTO2_RELOAD_ON_CHANGE → const int
- CAP_PROP_GPHOTO2_WIDGET_ENUMERATE → const int
- CAP_PROP_GSTREAMER_QUEUE_LENGTH → const int
- CAP_PROP_GUID → const int
- CAP_PROP_HUE → const int
- CAP_PROP_HW_ACCELERATION → const int
- CAP_PROP_HW_ACCELERATION_USE_OPENCL → const int
- CAP_PROP_HW_DEVICE → const int
- CAP_PROP_IMAGES_BASE → const int
- CAP_PROP_IMAGES_LAST → const int
- CAP_PROP_INTELPERC_DEPTH_CONFIDENCE_THRESHOLD → const int
- CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_HORZ → const int
- CAP_PROP_INTELPERC_DEPTH_FOCAL_LENGTH_VERT → const int
- CAP_PROP_INTELPERC_DEPTH_LOW_CONFIDENCE_VALUE → const int
- CAP_PROP_INTELPERC_DEPTH_SATURATION_VALUE → const int
- CAP_PROP_INTELPERC_PROFILE_COUNT → const int
- CAP_PROP_INTELPERC_PROFILE_IDX → const int
- CAP_PROP_IOS_DEVICE_EXPOSURE → const int
- CAP_PROP_IOS_DEVICE_FLASH → const int
- CAP_PROP_IOS_DEVICE_FOCUS → const int
- CAP_PROP_IOS_DEVICE_TORCH → const int
- CAP_PROP_IOS_DEVICE_WHITEBALANCE → const int
- CAP_PROP_IRIS → const int
- CAP_PROP_ISO_SPEED → const int
- CAP_PROP_LRF_HAS_KEY_FRAME → const int
- CAP_PROP_MODE → const int
- CAP_PROP_MONOCHROME → const int
- CAP_PROP_N_THREADS → const int
- CAP_PROP_OBSENSOR_INTRINSIC_CX → const int
- CAP_PROP_OBSENSOR_INTRINSIC_CY → const int
- CAP_PROP_OBSENSOR_INTRINSIC_FX → const int
- CAP_PROP_OBSENSOR_INTRINSIC_FY → const int
- CAP_PROP_OPEN_TIMEOUT_MSEC → const int
- CAP_PROP_OPENNI2_MIRROR → const int
- CAP_PROP_OPENNI2_SYNC → const int
- CAP_PROP_OPENNI_APPROX_FRAME_SYNC → const int
- CAP_PROP_OPENNI_BASELINE → const int
- CAP_PROP_OPENNI_CIRCLE_BUFFER → const int
- CAP_PROP_OPENNI_FOCAL_LENGTH → const int
- CAP_PROP_OPENNI_FRAME_MAX_DEPTH → const int
- CAP_PROP_OPENNI_GENERATOR_PRESENT → const int
- CAP_PROP_OPENNI_MAX_BUFFER_SIZE → const int
- CAP_PROP_OPENNI_MAX_TIME_DURATION → const int
- CAP_PROP_OPENNI_OUTPUT_MODE → const int
- CAP_PROP_OPENNI_REGISTRATION → const int
- CAP_PROP_OPENNI_REGISTRATION_ON → const int
- CAP_PROP_ORIENTATION_AUTO → const int
- CAP_PROP_ORIENTATION_META → const int
- CAP_PROP_PAN → const int
- CAP_PROP_POS_AVI_RATIO → const int
- CAP_PROP_POS_FRAMES → const int
- CAP_PROP_POS_MSEC → const int
- CAP_PROP_PVAPI_BINNINGX → const int
- CAP_PROP_PVAPI_BINNINGY → const int
- CAP_PROP_PVAPI_DECIMATIONHORIZONTAL → const int
- CAP_PROP_PVAPI_DECIMATIONVERTICAL → const int
- CAP_PROP_PVAPI_FRAMESTARTTRIGGERMODE → const int
- CAP_PROP_PVAPI_MULTICASTIP → const int
- CAP_PROP_PVAPI_PIXELFORMAT → const int
- CAP_PROP_READ_TIMEOUT_MSEC → const int
- CAP_PROP_RECTIFICATION → const int
- CAP_PROP_ROLL → const int
- CAP_PROP_SAR_DEN → const int
- CAP_PROP_SAR_NUM → const int
- CAP_PROP_SATURATION → const int
- CAP_PROP_SETTINGS → const int
- CAP_PROP_SHARPNESS → const int
- CAP_PROP_SPEED → const int
- CAP_PROP_STREAM_OPEN_TIME_USEC → const int
- CAP_PROP_TEMPERATURE → const int
- CAP_PROP_TILT → const int
- CAP_PROP_TRIGGER → const int
- CAP_PROP_TRIGGER_DELAY → const int
- CAP_PROP_VIDEO_STREAM → const int
- CAP_PROP_VIDEO_TOTAL_CHANNELS → const int
- CAP_PROP_VIEWFINDER → const int
- CAP_PROP_WB_TEMPERATURE → const int
- CAP_PROP_WHITE_BALANCE_BLUE_U → const int
- CAP_PROP_WHITE_BALANCE_RED_V → const int
- CAP_PROP_XI_ACQ_BUFFER_SIZE → const int
- CAP_PROP_XI_ACQ_BUFFER_SIZE_UNIT → const int
- CAP_PROP_XI_ACQ_FRAME_BURST_COUNT → const int
- CAP_PROP_XI_ACQ_TIMING_MODE → const int
- CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_COMMIT → const int
- CAP_PROP_XI_ACQ_TRANSPORT_BUFFER_SIZE → const int
- CAP_PROP_XI_AE_MAX_LIMIT → const int
- CAP_PROP_XI_AEAG → const int
- CAP_PROP_XI_AEAG_LEVEL → const int
- CAP_PROP_XI_AEAG_ROI_HEIGHT → const int
- CAP_PROP_XI_AEAG_ROI_OFFSET_X → const int
- CAP_PROP_XI_AEAG_ROI_OFFSET_Y → const int
- CAP_PROP_XI_AEAG_ROI_WIDTH → const int
- CAP_PROP_XI_AG_MAX_LIMIT → const int
- CAP_PROP_XI_APPLY_CMS → const int
- CAP_PROP_XI_AUTO_BANDWIDTH_CALCULATION → const int
- CAP_PROP_XI_AUTO_WB → const int
- CAP_PROP_XI_AVAILABLE_BANDWIDTH → const int
- CAP_PROP_XI_BINNING_HORIZONTAL → const int
- CAP_PROP_XI_BINNING_PATTERN → const int
- CAP_PROP_XI_BINNING_SELECTOR → const int
- CAP_PROP_XI_BINNING_VERTICAL → const int
- CAP_PROP_XI_BPC → const int
- CAP_PROP_XI_BUFFER_POLICY → const int
- CAP_PROP_XI_BUFFERS_QUEUE_SIZE → const int
- CAP_PROP_XI_CC_MATRIX_00 → const int
- CAP_PROP_XI_CC_MATRIX_01 → const int
- CAP_PROP_XI_CC_MATRIX_02 → const int
- CAP_PROP_XI_CC_MATRIX_03 → const int
- CAP_PROP_XI_CC_MATRIX_10 → const int
- CAP_PROP_XI_CC_MATRIX_11 → const int
- CAP_PROP_XI_CC_MATRIX_12 → const int
- CAP_PROP_XI_CC_MATRIX_13 → const int
- CAP_PROP_XI_CC_MATRIX_20 → const int
- CAP_PROP_XI_CC_MATRIX_21 → const int
- CAP_PROP_XI_CC_MATRIX_22 → const int
- CAP_PROP_XI_CC_MATRIX_23 → const int
- CAP_PROP_XI_CC_MATRIX_30 → const int
- CAP_PROP_XI_CC_MATRIX_31 → const int
- CAP_PROP_XI_CC_MATRIX_32 → const int
- CAP_PROP_XI_CC_MATRIX_33 → const int
- CAP_PROP_XI_CHIP_TEMP → const int
- CAP_PROP_XI_CMS → const int
- CAP_PROP_XI_COLOR_FILTER_ARRAY → const int
- CAP_PROP_XI_COLUMN_FPN_CORRECTION → const int
- CAP_PROP_XI_COOLING → const int
- CAP_PROP_XI_COUNTER_SELECTOR → const int
- CAP_PROP_XI_COUNTER_VALUE → const int
- CAP_PROP_XI_DATA_FORMAT → const int
- CAP_PROP_XI_DEBOUNCE_EN → const int
- CAP_PROP_XI_DEBOUNCE_POL → const int
- CAP_PROP_XI_DEBOUNCE_T0 → const int
- CAP_PROP_XI_DEBOUNCE_T1 → const int
- CAP_PROP_XI_DEBUG_LEVEL → const int
- CAP_PROP_XI_DECIMATION_HORIZONTAL → const int
- CAP_PROP_XI_DECIMATION_PATTERN → const int
- CAP_PROP_XI_DECIMATION_SELECTOR → const int
- CAP_PROP_XI_DECIMATION_VERTICAL → const int
- CAP_PROP_XI_DEFAULT_CC_MATRIX → const int
- CAP_PROP_XI_DEVICE_MODEL_ID → const int
- CAP_PROP_XI_DEVICE_RESET → const int
- CAP_PROP_XI_DEVICE_SN → const int
- CAP_PROP_XI_DOWNSAMPLING → const int
- CAP_PROP_XI_DOWNSAMPLING_TYPE → const int
- CAP_PROP_XI_EXP_PRIORITY → const int
- CAP_PROP_XI_EXPOSURE → const int
- CAP_PROP_XI_EXPOSURE_BURST_COUNT → const int
- CAP_PROP_XI_FFS_ACCESS_KEY → const int
- CAP_PROP_XI_FFS_FILE_ID → const int
- CAP_PROP_XI_FFS_FILE_SIZE → const int
- CAP_PROP_XI_FRAMERATE → const int
- CAP_PROP_XI_FREE_FFS_SIZE → const int
- CAP_PROP_XI_GAIN → const int
- CAP_PROP_XI_GAIN_SELECTOR → const int
- CAP_PROP_XI_GAMMAC → const int
- CAP_PROP_XI_GAMMAY → const int
- CAP_PROP_XI_GPI_LEVEL → const int
- CAP_PROP_XI_GPI_MODE → const int
- CAP_PROP_XI_GPI_SELECTOR → const int
- CAP_PROP_XI_GPO_MODE → const int
- CAP_PROP_XI_GPO_SELECTOR → const int
- CAP_PROP_XI_HDR → const int
- CAP_PROP_XI_HDR_KNEEPOINT_COUNT → const int
- CAP_PROP_XI_HDR_T1 → const int
- CAP_PROP_XI_HDR_T2 → const int
- CAP_PROP_XI_HEIGHT → const int
- CAP_PROP_XI_HOUS_BACK_SIDE_TEMP → const int
- CAP_PROP_XI_HOUS_TEMP → const int
- CAP_PROP_XI_HW_REVISION → const int
- CAP_PROP_XI_IMAGE_BLACK_LEVEL → const int
- CAP_PROP_XI_IMAGE_DATA_BIT_DEPTH → const int
- CAP_PROP_XI_IMAGE_DATA_FORMAT → const int
- CAP_PROP_XI_IMAGE_DATA_FORMAT_RGB32_ALPHA → const int
- CAP_PROP_XI_IMAGE_IS_COLOR → const int
- CAP_PROP_XI_IMAGE_PAYLOAD_SIZE → const int
- CAP_PROP_XI_IS_COOLED → const int
- CAP_PROP_XI_IS_DEVICE_EXIST → const int
- CAP_PROP_XI_KNEEPOINT1 → const int
- CAP_PROP_XI_KNEEPOINT2 → const int
- CAP_PROP_XI_LED_MODE → const int
- CAP_PROP_XI_LED_SELECTOR → const int
- CAP_PROP_XI_LENS_APERTURE_VALUE → const int
- CAP_PROP_XI_LENS_FEATURE → const int
- CAP_PROP_XI_LENS_FEATURE_SELECTOR → const int
- CAP_PROP_XI_LENS_FOCAL_LENGTH → const int
- CAP_PROP_XI_LENS_FOCUS_DISTANCE → const int
- CAP_PROP_XI_LENS_FOCUS_MOVE → const int
- CAP_PROP_XI_LENS_FOCUS_MOVEMENT_VALUE → const int
- CAP_PROP_XI_LENS_MODE → const int
- CAP_PROP_XI_LIMIT_BANDWIDTH → const int
- CAP_PROP_XI_LUT_EN → const int
- CAP_PROP_XI_LUT_INDEX → const int
- CAP_PROP_XI_LUT_VALUE → const int
- CAP_PROP_XI_MANUAL_WB → const int
- CAP_PROP_XI_OFFSET_X → const int
- CAP_PROP_XI_OFFSET_Y → const int
- CAP_PROP_XI_OUTPUT_DATA_BIT_DEPTH → const int
- CAP_PROP_XI_OUTPUT_DATA_PACKING → const int
- CAP_PROP_XI_OUTPUT_DATA_PACKING_TYPE → const int
- CAP_PROP_XI_RECENT_FRAME → const int
- CAP_PROP_XI_REGION_MODE → const int
- CAP_PROP_XI_REGION_SELECTOR → const int
- CAP_PROP_XI_ROW_FPN_CORRECTION → const int
- CAP_PROP_XI_SENSOR_BOARD_TEMP → const int
- CAP_PROP_XI_SENSOR_CLOCK_FREQ_HZ → const int
- CAP_PROP_XI_SENSOR_CLOCK_FREQ_INDEX → const int
- CAP_PROP_XI_SENSOR_DATA_BIT_DEPTH → const int
- CAP_PROP_XI_SENSOR_FEATURE_SELECTOR → const int
- CAP_PROP_XI_SENSOR_FEATURE_VALUE → const int
- CAP_PROP_XI_SENSOR_MODE → const int
- CAP_PROP_XI_SENSOR_OUTPUT_CHANNEL_COUNT → const int
- CAP_PROP_XI_SENSOR_TAPS → const int
- CAP_PROP_XI_SHARPNESS → const int
- CAP_PROP_XI_SHUTTER_TYPE → const int
- CAP_PROP_XI_TARGET_TEMP → const int
- CAP_PROP_XI_TEST_PATTERN → const int
- CAP_PROP_XI_TEST_PATTERN_GENERATOR_SELECTOR → const int
- CAP_PROP_XI_TIMEOUT → const int
- CAP_PROP_XI_TRANSPORT_PIXEL_FORMAT → const int
- CAP_PROP_XI_TRG_DELAY → const int
- CAP_PROP_XI_TRG_SELECTOR → const int
- CAP_PROP_XI_TRG_SOFTWARE → const int
- CAP_PROP_XI_TRG_SOURCE → const int
- CAP_PROP_XI_TS_RST_MODE → const int
- CAP_PROP_XI_TS_RST_SOURCE → const int
- CAP_PROP_XI_USED_FFS_SIZE → const int
- CAP_PROP_XI_WB_KB → const int
- CAP_PROP_XI_WB_KG → const int
- CAP_PROP_XI_WB_KR → const int
- CAP_PROP_XI_WIDTH → const int
- CAP_PROP_ZOOM → const int
- CAP_PVAPI → const int
- CAP_PVAPI_DECIMATION_2OUTOF16 → const int
- CAP_PVAPI_DECIMATION_2OUTOF4 → const int
- CAP_PVAPI_DECIMATION_2OUTOF8 → const int
- CAP_PVAPI_DECIMATION_OFF → const int
- CAP_PVAPI_FSTRIGMODE_FIXEDRATE → const int
- CAP_PVAPI_FSTRIGMODE_FREERUN → const int
- CAP_PVAPI_FSTRIGMODE_SOFTWARE → const int
- CAP_PVAPI_FSTRIGMODE_SYNCIN1 → const int
- CAP_PVAPI_FSTRIGMODE_SYNCIN2 → const int
- CAP_PVAPI_PIXELFORMAT_BAYER16 → const int
- CAP_PVAPI_PIXELFORMAT_BAYER8 → const int
- CAP_PVAPI_PIXELFORMAT_BGR24 → const int
- CAP_PVAPI_PIXELFORMAT_BGRA32 → const int
- CAP_PVAPI_PIXELFORMAT_MONO16 → const int
- CAP_PVAPI_PIXELFORMAT_MONO8 → const int
- CAP_PVAPI_PIXELFORMAT_RGB24 → const int
- CAP_PVAPI_PIXELFORMAT_RGBA32 → const int
- CAP_QT → const int
- CAP_REALSENSE → const int
- CAP_UEYE → const int
- CAP_UNICAP → const int
- CAP_V4L → const int
- CAP_V4L2 → const int
- CAP_VFW → const int
- CAP_WINRT → const int
- CAP_XIAPI → const int
- CAP_XINE → const int
- CC_STAT_AREA → const int
- CC_STAT_HEIGHT → const int
- CC_STAT_LEFT → const int
- CC_STAT_MAX → const int
- CC_STAT_TOP → const int
- CC_STAT_WIDTH → const int
- CCL_BBDT → const int
- CCL_BOLELLI → const int
- CCL_DEFAULT → const int
- CCL_GRANA → const int
- CCL_SAUF → const int
- CCL_SPAGHETTI → const int
- CCL_WU → const int
- CHAIN_APPROX_NONE → const int
- CHAIN_APPROX_SIMPLE → const int
- CHAIN_APPROX_TC89_KCOS → const int
- CHAIN_APPROX_TC89_L1 → const int
- CMP_EQ → const int
- CMP_GE → const int
- CMP_GT → const int
- CMP_LE → const int
- CMP_LT → const int
- CMP_NE → const int
- COLOR_BayerBG2BGR → const int
- COLOR_BayerBG2BGR_EA → const int
- COLOR_BayerBG2BGR_VNG → const int
- COLOR_BayerBG2BGRA → const int
- COLOR_BayerBG2GRAY → const int
- COLOR_BayerBG2RGB → const int
- COLOR_BayerBG2RGB_EA → const int
- COLOR_BayerBG2RGB_VNG → const int
- COLOR_BayerBG2RGBA → const int
- COLOR_BayerBGGR2BGR → const int
- COLOR_BayerBGGR2BGR_EA → const int
- COLOR_BayerBGGR2BGR_VNG → const int
- COLOR_BayerBGGR2BGRA → const int
- COLOR_BayerBGGR2GRAY → const int
- COLOR_BayerBGGR2RGB → const int
- COLOR_BayerBGGR2RGB_EA → const int
- COLOR_BayerBGGR2RGB_VNG → const int
- COLOR_BayerBGGR2RGBA → const int
- COLOR_BayerGB2BGR → const int
- COLOR_BayerGB2BGR_EA → const int
- COLOR_BayerGB2BGR_VNG → const int
- COLOR_BayerGB2BGRA → const int
- COLOR_BayerGB2GRAY → const int
- COLOR_BayerGB2RGB → const int
- COLOR_BayerGB2RGB_EA → const int
- COLOR_BayerGB2RGB_VNG → const int
- COLOR_BayerGB2RGBA → const int
- COLOR_BayerGBRG2BGR → const int
- COLOR_BayerGBRG2BGR_EA → const int
- COLOR_BayerGBRG2BGR_VNG → const int
- COLOR_BayerGBRG2BGRA → const int
- COLOR_BayerGBRG2GRAY → const int
- COLOR_BayerGBRG2RGB → const int
- COLOR_BayerGBRG2RGB_EA → const int
- COLOR_BayerGBRG2RGB_VNG → const int
- COLOR_BayerGBRG2RGBA → const int
- COLOR_BayerGR2BGR → const int
- COLOR_BayerGR2BGR_EA → const int
- COLOR_BayerGR2BGR_VNG → const int
- COLOR_BayerGR2BGRA → const int
- COLOR_BayerGR2GRAY → const int
- COLOR_BayerGR2RGB → const int
- COLOR_BayerGR2RGB_EA → const int
- COLOR_BayerGR2RGB_VNG → const int
- COLOR_BayerGR2RGBA → const int
- COLOR_BayerGRBG2BGR → const int
- COLOR_BayerGRBG2BGR_EA → const int
- COLOR_BayerGRBG2BGR_VNG → const int
- COLOR_BayerGRBG2BGRA → const int
- COLOR_BayerGRBG2GRAY → const int
- COLOR_BayerGRBG2RGB → const int
- COLOR_BayerGRBG2RGB_EA → const int
- COLOR_BayerGRBG2RGB_VNG → const int
- COLOR_BayerGRBG2RGBA → const int
- COLOR_BayerRG2BGR → const int
- COLOR_BayerRG2BGR_EA → const int
- COLOR_BayerRG2BGR_VNG → const int
- COLOR_BayerRG2BGRA → const int
- COLOR_BayerRG2GRAY → const int
- COLOR_BayerRG2RGB → const int
- COLOR_BayerRG2RGB_EA → const int
- COLOR_BayerRG2RGB_VNG → const int
- COLOR_BayerRG2RGBA → const int
- COLOR_BayerRGGB2BGR → const int
- COLOR_BayerRGGB2BGR_EA → const int
- COLOR_BayerRGGB2BGR_VNG → const int
- COLOR_BayerRGGB2BGRA → const int
- COLOR_BayerRGGB2GRAY → const int
- COLOR_BayerRGGB2RGB → const int
- COLOR_BayerRGGB2RGB_EA → const int
- COLOR_BayerRGGB2RGB_VNG → const int
- COLOR_BayerRGGB2RGBA → const int
- COLOR_BGR2BGR555 → const int
- COLOR_BGR2BGR565 → const int
- COLOR_BGR2BGRA → const int
- COLOR_BGR2GRAY → const int
- COLOR_BGR2HLS → const int
- COLOR_BGR2HLS_FULL → const int
- COLOR_BGR2HSV → const int
- COLOR_BGR2HSV_FULL → const int
- COLOR_BGR2Lab → const int
- COLOR_BGR2Luv → const int
- COLOR_BGR2RGB → const int
- COLOR_BGR2RGBA → const int
- COLOR_BGR2XYZ → const int
- COLOR_BGR2YCrCb → const int
- COLOR_BGR2YUV → const int
- COLOR_BGR2YUV_I420 → const int
- COLOR_BGR2YUV_IYUV → const int
- COLOR_BGR2YUV_UYNV → const int
- COLOR_BGR2YUV_UYVY → const int
- COLOR_BGR2YUV_Y422 → const int
- COLOR_BGR2YUV_YUNV → const int
- COLOR_BGR2YUV_YUY2 → const int
- COLOR_BGR2YUV_YUYV → const int
- COLOR_BGR2YUV_YV12 → const int
- COLOR_BGR2YUV_YVYU → const int
- COLOR_BGR5552BGR → const int
- COLOR_BGR5552BGRA → const int
- COLOR_BGR5552GRAY → const int
- COLOR_BGR5552RGB → const int
- COLOR_BGR5552RGBA → const int
- COLOR_BGR5652BGR → const int
- COLOR_BGR5652BGRA → const int
- COLOR_BGR5652GRAY → const int
- COLOR_BGR5652RGB → const int
- COLOR_BGR5652RGBA → const int
- COLOR_BGRA2BGR → const int
- COLOR_BGRA2BGR555 → const int
- COLOR_BGRA2BGR565 → const int
- COLOR_BGRA2GRAY → const int
- COLOR_BGRA2RGB → const int
- COLOR_BGRA2RGBA → const int
- COLOR_BGRA2YUV_I420 → const int
- COLOR_BGRA2YUV_IYUV → const int
- COLOR_BGRA2YUV_UYNV → const int
- COLOR_BGRA2YUV_UYVY → const int
- COLOR_BGRA2YUV_Y422 → const int
- COLOR_BGRA2YUV_YUNV → const int
- COLOR_BGRA2YUV_YUY2 → const int
- COLOR_BGRA2YUV_YUYV → const int
- COLOR_BGRA2YUV_YV12 → const int
- COLOR_BGRA2YUV_YVYU → const int
- COLOR_COLORCVT_MAX → const int
- COLOR_GRAY2BGR → const int
- COLOR_GRAY2BGR555 → const int
- COLOR_GRAY2BGR565 → const int
- COLOR_GRAY2BGRA → const int
- COLOR_GRAY2RGB → const int
- COLOR_GRAY2RGBA → const int
- COLOR_HLS2BGR → const int
- COLOR_HLS2BGR_FULL → const int
- COLOR_HLS2RGB → const int
- COLOR_HLS2RGB_FULL → const int
- COLOR_HSV2BGR → const int
- COLOR_HSV2BGR_FULL → const int
- COLOR_HSV2RGB → const int
- COLOR_HSV2RGB_FULL → const int
- COLOR_Lab2BGR → const int
- COLOR_Lab2LBGR → const int
- COLOR_Lab2LRGB → const int
- COLOR_Lab2RGB → const int
- COLOR_LBGR2Lab → const int
- COLOR_LBGR2Luv → const int
- COLOR_LRGB2Lab → const int
- COLOR_LRGB2Luv → const int
- COLOR_Luv2BGR → const int
- COLOR_Luv2LBGR → const int
- COLOR_Luv2LRGB → const int
- COLOR_Luv2RGB → const int
- COLOR_mRGBA2RGBA → const int
- COLOR_RGB2BGR → const int
- COLOR_RGB2BGR555 → const int
- COLOR_RGB2BGR565 → const int
- COLOR_RGB2BGRA → const int
- COLOR_RGB2GRAY → const int
- COLOR_RGB2HLS → const int
- COLOR_RGB2HLS_FULL → const int
- COLOR_RGB2HSV → const int
- COLOR_RGB2HSV_FULL → const int
- COLOR_RGB2Lab → const int
- COLOR_RGB2Luv → const int
- COLOR_RGB2RGBA → const int
- COLOR_RGB2XYZ → const int
- COLOR_RGB2YCrCb → const int
- COLOR_RGB2YUV → const int
- COLOR_RGB2YUV_I420 → const int
- COLOR_RGB2YUV_IYUV → const int
- COLOR_RGB2YUV_UYNV → const int
- COLOR_RGB2YUV_UYVY → const int
- COLOR_RGB2YUV_Y422 → const int
- COLOR_RGB2YUV_YUNV → const int
- COLOR_RGB2YUV_YUY2 → const int
- COLOR_RGB2YUV_YUYV → const int
- COLOR_RGB2YUV_YV12 → const int
- COLOR_RGB2YUV_YVYU → const int
- COLOR_RGBA2BGR → const int
- COLOR_RGBA2BGR555 → const int
- COLOR_RGBA2BGR565 → const int
- COLOR_RGBA2BGRA → const int
- COLOR_RGBA2GRAY → const int
- COLOR_RGBA2mRGBA → const int
- COLOR_RGBA2RGB → const int
- COLOR_RGBA2YUV_I420 → const int
- COLOR_RGBA2YUV_IYUV → const int
- COLOR_RGBA2YUV_UYNV → const int
- COLOR_RGBA2YUV_UYVY → const int
- COLOR_RGBA2YUV_Y422 → const int
- COLOR_RGBA2YUV_YUNV → const int
- COLOR_RGBA2YUV_YUY2 → const int
- COLOR_RGBA2YUV_YUYV → const int
- COLOR_RGBA2YUV_YV12 → const int
- COLOR_RGBA2YUV_YVYU → const int
- COLOR_XYZ2BGR → const int
- COLOR_XYZ2RGB → const int
- COLOR_YCrCb2BGR → const int
- COLOR_YCrCb2RGB → const int
- COLOR_YUV2BGR → const int
- COLOR_YUV2BGR_I420 → const int
- COLOR_YUV2BGR_IYUV → const int
- COLOR_YUV2BGR_NV12 → const int
- COLOR_YUV2BGR_NV21 → const int
- COLOR_YUV2BGR_UYNV → const int
- COLOR_YUV2BGR_UYVY → const int
- COLOR_YUV2BGR_Y422 → const int
- COLOR_YUV2BGR_YUNV → const int
- COLOR_YUV2BGR_YUY2 → const int
- COLOR_YUV2BGR_YUYV → const int
- COLOR_YUV2BGR_YV12 → const int
- COLOR_YUV2BGR_YVYU → const int
- COLOR_YUV2BGRA_I420 → const int
- COLOR_YUV2BGRA_IYUV → const int
- COLOR_YUV2BGRA_NV12 → const int
- COLOR_YUV2BGRA_NV21 → const int
- COLOR_YUV2BGRA_UYNV → const int
- COLOR_YUV2BGRA_UYVY → const int
- COLOR_YUV2BGRA_Y422 → const int
- COLOR_YUV2BGRA_YUNV → const int
- COLOR_YUV2BGRA_YUY2 → const int
- COLOR_YUV2BGRA_YUYV → const int
- COLOR_YUV2BGRA_YV12 → const int
- COLOR_YUV2BGRA_YVYU → const int
- COLOR_YUV2GRAY_420 → const int
- COLOR_YUV2GRAY_I420 → const int
- COLOR_YUV2GRAY_IYUV → const int
- COLOR_YUV2GRAY_NV12 → const int
- COLOR_YUV2GRAY_NV21 → const int
- COLOR_YUV2GRAY_UYNV → const int
- COLOR_YUV2GRAY_UYVY → const int
- COLOR_YUV2GRAY_Y422 → const int
- COLOR_YUV2GRAY_YUNV → const int
- COLOR_YUV2GRAY_YUY2 → const int
- COLOR_YUV2GRAY_YUYV → const int
- COLOR_YUV2GRAY_YV12 → const int
- COLOR_YUV2GRAY_YVYU → const int
- COLOR_YUV2RGB → const int
- COLOR_YUV2RGB_I420 → const int
- COLOR_YUV2RGB_IYUV → const int
- COLOR_YUV2RGB_NV12 → const int
- COLOR_YUV2RGB_NV21 → const int
- COLOR_YUV2RGB_UYNV → const int
- COLOR_YUV2RGB_UYVY → const int
- COLOR_YUV2RGB_Y422 → const int
- COLOR_YUV2RGB_YUNV → const int
- COLOR_YUV2RGB_YUY2 → const int
- COLOR_YUV2RGB_YUYV → const int
- COLOR_YUV2RGB_YV12 → const int
- COLOR_YUV2RGB_YVYU → const int
- COLOR_YUV2RGBA_I420 → const int
- COLOR_YUV2RGBA_IYUV → const int
- COLOR_YUV2RGBA_NV12 → const int
- COLOR_YUV2RGBA_NV21 → const int
- COLOR_YUV2RGBA_UYNV → const int
- COLOR_YUV2RGBA_UYVY → const int
- COLOR_YUV2RGBA_Y422 → const int
- COLOR_YUV2RGBA_YUNV → const int
- COLOR_YUV2RGBA_YUY2 → const int
- COLOR_YUV2RGBA_YUYV → const int
- COLOR_YUV2RGBA_YV12 → const int
- COLOR_YUV2RGBA_YVYU → const int
- COLOR_YUV420p2BGR → const int
- COLOR_YUV420p2BGRA → const int
- COLOR_YUV420p2GRAY → const int
- COLOR_YUV420p2RGB → const int
- COLOR_YUV420p2RGBA → const int
- COLOR_YUV420sp2BGR → const int
- COLOR_YUV420sp2BGRA → const int
- COLOR_YUV420sp2GRAY → const int
- COLOR_YUV420sp2RGB → const int
- COLOR_YUV420sp2RGBA → const int
- COLORMAP_AUTUMN → const int
- COLORMAP_BONE → const int
- COLORMAP_CIVIDIS → const int
- COLORMAP_COOL → const int
- COLORMAP_DEEPGREEN → const int
- COLORMAP_HOT → const int
- COLORMAP_HSV → const int
- COLORMAP_INFERNO → const int
- COLORMAP_JET → const int
- COLORMAP_MAGMA → const int
- COLORMAP_OCEAN → const int
- COLORMAP_PARULA → const int
- COLORMAP_PINK → const int
- COLORMAP_PLASMA → const int
- COLORMAP_RAINBOW → const int
- COLORMAP_SPRING → const int
- COLORMAP_SUMMER → const int
- COLORMAP_TURBO → const int
- COLORMAP_TWILIGHT → const int
- COLORMAP_TWILIGHT_SHIFTED → const int
- COLORMAP_VIRIDIS → const int
- COLORMAP_WINTER → const int
- CONTOURS_MATCH_I1 → const int
- CONTOURS_MATCH_I2 → const int
- CONTOURS_MATCH_I3 → const int
- COV_POLISHER → const int
- COVAR_COLS → const int
- COVAR_NORMAL → const int
- COVAR_ROWS → const int
- COVAR_SCALE → const int
- COVAR_SCRAMBLED → const int
- COVAR_USE_AVG → const int
- CV_2PI → const double
- CV__CAP_PROP_LATEST → const int
- CV_F32_MAX → const double
- CV_F64_MAX → const double
- CV_I16_MAX → const int
- CV_I16_MIN → const int
- CV_I32_MAX → const int
- CV_I32_MIN → const int
- CV_I8_MAX → const int
- CV_I8_MIN → const int
- CV_LOG2 → const double
- CV_PI → const double
- CV_U16_MAX → const int
- CV_U16_MIN → const int
- CV_U32_MAX → const int
- CV_U32_MIN → const int
- CV_U8_MAX → const int
- CV_U8_MIN → const int
-
cvRunAsync
→ const Future<
T> Function<T>(Pointer< CvStatus> func(CvCallback_0 callback), void onComplete(Completer<T> completer)) - DCT_INVERSE → const int
- DCT_ROWS → const int
- DECOMP_CHOLESKY → const int
- DECOMP_EIG → const int
- DECOMP_LU → const int
- DECOMP_NORMAL → const int
- DECOMP_QR → const int
- DECOMP_SVD → const int
- DFT_COMPLEX_INPUT → const int
- DFT_COMPLEX_OUTPUT → const int
- DFT_INVERSE → const int
- DFT_REAL_OUTPUT → const int
- DFT_ROWS → const int
- DFT_SCALE → const int
- DIST_C → const int
- DIST_FAIR → const int
- DIST_HUBER → const int
- DIST_L1 → const int
- DIST_L12 → const int
- DIST_L2 → const int
- DIST_LABEL_CCOMP → const int
- DIST_LABEL_PIXEL → const int
- DIST_MASK_3 → const int
- DIST_MASK_5 → const int
- DIST_MASK_PRECISE → const int
- DIST_USER → const int
- DIST_WELSCH → const int
- DNN_BACKEND_CANN → const int
- DNN_BACKEND_CUDA → const int
- DNN_BACKEND_DEFAULT → const int
- DNN_BACKEND_HALIDE → const int
- DNN_BACKEND_INFERENCE_ENGINE → const int
- DNN_BACKEND_OPENCV → const int
- DNN_BACKEND_TIMVX → const int
- DNN_BACKEND_VKCOM → const int
- DNN_BACKEND_WEBNN → const int
- DNN_TARGET_CPU → const int
- DNN_TARGET_CPU_FP16 → const int
- Only the ARM platform is supported. Low precision computing, accelerate model inference.
- DNN_TARGET_CUDA → const int
- DNN_TARGET_CUDA_FP16 → const int
- DNN_TARGET_FPGA → const int
- FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
- DNN_TARGET_HDDL → const int
- DNN_TARGET_MYRIAD → const int
- DNN_TARGET_NPU → const int
- DNN_TARGET_OPENCL → const int
- DNN_TARGET_OPENCL_FP16 → const int
- DNN_TARGET_VULKAN → const int
- FILLED → const int
- FILTER_SCHARR → const int
- FLOODFILL_FIXED_RANGE → const int
- FLOODFILL_MASK_ONLY → const int
- FM_7POINT → const int
- 7-point algorithm
- FM_8POINT → const int
- 8-point algorithm
- FM_LMEDS → const int
- least-median algorithm. 7-point algorithm is used.
- FM_RANSAC → const int
- RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
- FONT_HERSHEY_COMPLEX → const int
- FONT_HERSHEY_COMPLEX_SMALL → const int
- FONT_HERSHEY_DUPLEX → const int
- FONT_HERSHEY_PLAIN → const int
- FONT_HERSHEY_SCRIPT_COMPLEX → const int
- FONT_HERSHEY_SCRIPT_SIMPLEX → const int
- FONT_HERSHEY_SIMPLEX → const int
- FONT_HERSHEY_TRIPLEX → const int
- FONT_ITALIC → const int
- GC_BGD → const int
- GC_EVAL → const int
- GC_EVAL_FREEZE_MODEL → const int
- GC_FGD → const int
- GC_INIT_WITH_MASK → const int
- GC_INIT_WITH_RECT → const int
- GC_PR_BGD → const int
- GC_PR_FGD → const int
- GEMM_1_T → const int
- GEMM_2_T → const int
- GEMM_3_T → const int
- HISTCMP_BHATTACHARYYA → const int
- HISTCMP_CHISQR → const int
- HISTCMP_CHISQR_ALT → const int
- HISTCMP_CORREL → const int
- HISTCMP_HELLINGER → const int
- HISTCMP_INTERSECT → const int
- HISTCMP_KL_DIV → const int
- HOMOGRAPY_ALL_POINTS → const int
- HOMOGRAPY_LMEDS → const int
- HOMOGRAPY_RANSAC → const int
- HOUGH_GRADIENT → const int
- HOUGH_GRADIENT_ALT → const int
- HOUGH_MULTI_SCALE → const int
- HOUGH_PROBABILISTIC → const int
- HOUGH_STANDARD → const int
- IMREAD_ANYCOLOR → const int
- IMREAD_ANYDEPTH → const int
- IMREAD_COLOR → const int
- IMREAD_GRAYSCALE → const int
- IMREAD_IGNORE_ORIENTATION → const int
- IMREAD_LOAD_GDAL → const int
- IMREAD_REDUCED_COLOR_2 → const int
- IMREAD_REDUCED_COLOR_4 → const int
- IMREAD_REDUCED_COLOR_8 → const int
- IMREAD_REDUCED_GRAYSCALE_2 → const int
- IMREAD_REDUCED_GRAYSCALE_4 → const int
- IMREAD_REDUCED_GRAYSCALE_8 → const int
- IMREAD_UNCHANGED → const int
- IMWRITE_AVIF_DEPTH → const int
- IMWRITE_AVIF_QUALITY → const int
- IMWRITE_AVIF_SPEED → const int
- IMWRITE_EXR_COMPRESSION → const int
- IMWRITE_EXR_COMPRESSION_B44 → const int
- IMWRITE_EXR_COMPRESSION_B44A → const int
- IMWRITE_EXR_COMPRESSION_DWAA → const int
- IMWRITE_EXR_COMPRESSION_DWAB → const int
- IMWRITE_EXR_COMPRESSION_NO → const int
- IMWRITE_EXR_COMPRESSION_PIZ → const int
- IMWRITE_EXR_COMPRESSION_PXR24 → const int
- IMWRITE_EXR_COMPRESSION_RLE → const int
- IMWRITE_EXR_COMPRESSION_ZIP → const int
- IMWRITE_EXR_COMPRESSION_ZIPS → const int
- IMWRITE_EXR_DWA_COMPRESSION_LEVEL → const int
- IMWRITE_EXR_TYPE → const int
- IMWRITE_EXR_TYPE_FLOAT → const int
- IMWRITE_EXR_TYPE_HALF → const int
- IMWRITE_HDR_COMPRESSION → const int
- IMWRITE_HDR_COMPRESSION_NONE → const int
- IMWRITE_HDR_COMPRESSION_RLE → const int
- IMWRITE_JPEG2000_COMPRESSION_X1000 → const int
- IMWRITE_JPEG_CHROMA_QUALITY → const int
- IMWRITE_JPEG_LUMA_QUALITY → const int
- IMWRITE_JPEG_OPTIMIZE → const int
- IMWRITE_JPEG_PROGRESSIVE → const int
- IMWRITE_JPEG_QUALITY → const int
- IMWRITE_JPEG_RST_INTERVAL → const int
- IMWRITE_JPEG_SAMPLING_FACTOR → const int
- IMWRITE_JPEG_SAMPLING_FACTOR_411 → const int
- IMWRITE_JPEG_SAMPLING_FACTOR_420 → const int
- IMWRITE_JPEG_SAMPLING_FACTOR_422 → const int
- IMWRITE_JPEG_SAMPLING_FACTOR_440 → const int
- IMWRITE_JPEG_SAMPLING_FACTOR_444 → const int
- IMWRITE_PAM_FORMAT_BLACKANDWHITE → const int
- IMWRITE_PAM_FORMAT_GRAYSCALE → const int
- IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA → const int
- IMWRITE_PAM_FORMAT_NULL → const int
- IMWRITE_PAM_FORMAT_RGB → const int
- IMWRITE_PAM_FORMAT_RGB_ALPHA → const int
- IMWRITE_PAM_TUPLETYPE → const int
- IMWRITE_PNG_BILEVEL → const int
- IMWRITE_PNG_COMPRESSION → const int
- IMWRITE_PNG_STRATEGY → const int
- IMWRITE_PNG_STRATEGY_DEFAULT → const int
- IMWRITE_PNG_STRATEGY_FILTERED → const int
- IMWRITE_PNG_STRATEGY_FIXED → const int
- IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY → const int
- IMWRITE_PNG_STRATEGY_RLE → const int
- IMWRITE_PXM_BINARY → const int
- IMWRITE_TIFF_COMPRESSION → const int
- IMWRITE_TIFF_RESUNIT → const int
- IMWRITE_TIFF_XDPI → const int
- IMWRITE_TIFF_YDPI → const int
- IMWRITE_WEBP_QUALITY → const int
- INPAINT_NS → const int
- INPAINT_TELEA → const int
- INTER_AREA → const int
- INTER_BITS → const int
- INTER_BITS2 → const int
- INTER_CUBIC → const int
- INTER_LANCZOS4 → const int
- INTER_LINEAR → const int
- INTER_LINEAR_EXACT → const int
- INTER_MAX → const int
- INTER_NEAREST → const int
- INTER_NEAREST_EXACT → const int
- INTER_TAB_SIZE → const int
- INTER_TAB_SIZE2 → const int
- INTERSECT_FULL → const int
- INTERSECT_NONE → const int
- INTERSECT_PARTIAL → const int
- KMEANS_PP_CENTERS → const int
- KMEANS_RANDOM_CENTERS → const int
- KMEANS_USE_INITIAL_LABELS → const int
- LINE_4 → const int
- LINE_8 → const int
- LINE_AA → const int
- LMEDS → const int
- LOCAL_OPTIM_GC → const int
- LOCAL_OPTIM_INNER_AND_ITER_LO → const int
- LOCAL_OPTIM_INNER_LO → const int
- LOCAL_OPTIM_NULL → const int
- LOCAL_OPTIM_SIGMA → const int
- LOG_LEVEL_DEBUG → const int
- LOG_LEVEL_ERROR → const int
- LOG_LEVEL_FATAL → const int
- LOG_LEVEL_INFO → const int
- LOG_LEVEL_SILENT → const int
- Constants for log levels
- LOG_LEVEL_VERBOSE → const int
- LOG_LEVEL_WARNING → const int
- LSD_REFINE_ADV → const int
- LSD_REFINE_NONE → const int
- LSD_REFINE_STD → const int
- LSQ_POLISHER → const int
- MAGSAC → const int
- MARKER_CROSS → const int
- MARKER_DIAMOND → const int
- MARKER_SQUARE → const int
- MARKER_STAR → const int
- MARKER_TILTED_CROSS → const int
- MARKER_TRIANGLE_DOWN → const int
- MARKER_TRIANGLE_UP → const int
- MIXED_CLONE → const int
- MONOCHROME_TRANSFER → const int
- MORPH_BLACKHAT → const int
- MORPH_CLOSE → const int
- MORPH_CROSS → const int
- MORPH_DILATE → const int
- MORPH_ELLIPSE → const int
- MORPH_ERODE → const int
- MORPH_GRADIENT → const int
- MORPH_HITMISS → const int
- MORPH_OPEN → const int
- MORPH_RECT → const int
- MORPH_TOPHAT → const int
- MOTION_AFFINE → const int
- MOTION_EUCLIDEAN → const int
- MOTION_HOMOGRAPHY → const int
- MOTION_TRANSLATION → const int
- NEIGH_FLANN_KNN → const int
- NEIGH_FLANN_RADIUS → const int
- NEIGH_GRID → const int
- NONE_POLISHER → const int
- NORM_HAMMING → const int
- NORM_HAMMING2 → const int
- NORM_INF → const int
- NORM_L1 → const int
- NORM_L2 → const int
- NORM_L2SQR → const int
- NORM_MINMAX → const int
- NORM_RELATIVE → const int
- NORM_TYPE_MASK → const int
- NORMAL_CLONE → const int
- NORMCONV_FILTER → const int
- OPTFLOW_FARNEBACK_GAUSSIAN → const int
- OPTFLOW_LK_GET_MIN_EIGENVALS → const int
- OPTFLOW_USE_INITIAL_FLOW → const int
- PROJ_SPHERICAL_EQRECT → const int
- PROJ_SPHERICAL_ORTHO → const int
- validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
- RANSAC → const int
- RECURS_FILTER → const int
- REDUCE_AVG → const int
- REDUCE_MAX → const int
- REDUCE_MIN → const int
- REDUCE_SUM → const int
- REDUCE_SUM2 → const int
- RETR_CCOMP → const int
- RETR_EXTERNAL → const int
- RETR_FLOODFILL → const int
- RETR_LIST → const int
- RETR_TREE → const int
- RHO → const int
- RNG_DIST_NORMAL → const int
- RNG_DIST_UNIFORM → const int
- ROTATE_180 → const int
- ROTATE_90_CLOCKWISE → const int
- ROTATE_90_COUNTERCLOCKWISE → const int
- SAMPLING_NAPSAC → const int
- SAMPLING_PROGRESSIVE_NAPSAC → const int
- SAMPLING_PROSAC → const int
- SAMPLING_UNIFORM → const int
- SCORE_METHOD_LMEDS → const int
- SCORE_METHOD_MAGSAC → const int
- SCORE_METHOD_MSAC → const int
- SCORE_METHOD_RANSAC → const int
- SOLVEPNP_AP3P → const int
- An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
- SOLVEPNP_DLS → const int
- Broken implementation. Using this flag will fallback to EPnP. \n A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
- SOLVEPNP_EPNP → const int
- EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
- SOLVEPNP_IPPE → const int
- Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n Object points must be coplanar.
- SOLVEPNP_IPPE_SQUARE → const int
- Infinitesimal Plane-Based Pose Estimation @cite Collins14 \n This is a special case suitable for marker pose estimation.\n 4 coplanar object points must be defined in the following order:
- SOLVEPNP_ITERATIVE → const int
- Pose refinement using non-linear Levenberg-Marquardt minimization scheme @cite Madsen04 @cite Eade13 \n Initial solution for non-planar "objectPoints" needs at least 6 points and uses the DLT algorithm. \n Initial solution for planar "objectPoints" needs at least 4 points and uses pose from homography decomposition.
- SOLVEPNP_P3P → const int
- Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
- SOLVEPNP_SQPNP → const int
- SQPnP: A Consistently Fast and Globally OptimalSolution to the Perspective-n-Point Problem @cite Terzakis2020SQPnP
- SOLVEPNP_UPNP → const int
- Broken implementation. Using this flag will fallback to EPnP. \n Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
- SORT_ASCENDING → const int
- SORT_DESCENDING → const int
- SORT_EVERY_COLUMN → const int
- SORT_EVERY_ROW → const int
- TERM_COUNT → const int
- TERM_EPS → const int
- TERM_MAX_ITER → const int
- THRESH_BINARY → const int
- THRESH_BINARY_INV → const int
- THRESH_MASK → const int
- THRESH_OTSU → const int
- THRESH_TOZERO → const int
- THRESH_TOZERO_INV → const int
- THRESH_TRIANGLE → const int
- THRESH_TRUNC → const int
- TM_CCOEFF → const int
- TM_CCOEFF_NORMED → const int
- TM_CCORR → const int
- TM_CCORR_NORMED → const int
- TM_SQDIFF → const int
- TM_SQDIFF_NORMED → const int
- USAC_ACCURATE → const int
- USAC_DEFAULT → const int
- USAC_FAST → const int
- USAC_FM_8PTS → const int
- USAC_MAGSAC → const int
- USAC_PARALLEL → const int
- USAC_PROSAC → const int
- VIDEOWRITER_PROP_DEPTH → const int
- Defaults to CV_8U.
- VIDEOWRITER_PROP_DTS_DELAY → const int
- Specifies the maximum difference between presentation (pts) and decompression timestamps (dts) using the FPS time base. This property is necessary only when encapsulating externally encoded video where the decoding order differs from the presentation order, such as in GOP patterns with bi-directional B-frames. The value should be calculated based on the specific GOP pattern used during encoding. For example, in a GOP with presentation order IBP and decoding order IPB, this value would be 1, as the B-frame is the second frame presented but the third to be decoded. It can be queried from the resulting encapsulated video file using VideoCapture::get(CAP_PROP_DTS_DELAY). Non-zero values usually imply the stream is encoded using B-frames. FFmpeg back-end only.
- VIDEOWRITER_PROP_FRAMEBYTES → const int
- (Read-only): Size of just encoded video frame. Note that the encoding order may be different from representation order.
- VIDEOWRITER_PROP_HW_ACCELERATION → const int
-
(open-only) Hardware acceleration type (see #VideoAccelerationType). Setting supported only via
params
parameter in VideoWriter constructor / .open() method. Default value is backend-specific. - VIDEOWRITER_PROP_HW_ACCELERATION_USE_OPENCL → const int
- (open-only) If non-zero, create new OpenCL context and bind it to current thread. The OpenCL context created with Video Acceleration context attached it (if not attached yet) for optimized GPU data copy between cv::UMat and HW accelerated encoder.
- VIDEOWRITER_PROP_HW_DEVICE → const int
- (open-only) Hardware device index (select GPU if multiple available). Device enumeration is acceleration type specific.
- VIDEOWRITER_PROP_IS_COLOR → const int
- If it is not zero, the encoder will expect and encode color frames, otherwise it will work with grayscale frames.
- VIDEOWRITER_PROP_KEY_FLAG → const int
- Set to non-zero to signal that the following frames are key frames or zero if not, when encapsulating raw video (VIDEOWRITER_PROP_RAW_VIDEO != 0). FFmpeg back-end only.
- VIDEOWRITER_PROP_KEY_INTERVAL → const int
- (open-only) Set the key frame interval using raw video encapsulation (VIDEOWRITER_PROP_RAW_VIDEO != 0). Defaults to 1 when not set. FFmpeg back-end only.
- VIDEOWRITER_PROP_NSTRIPES → const int
- Number of stripes for parallel encoding. -1 for auto detection.
- VIDEOWRITER_PROP_PTS → const int
- Specifies the frame presentation timestamp for each frame using the FPS time base. This property is only necessary when encapsulating externally encoded video where the decoding order differs from the presentation order, such as in GOP patterns with bi-directional B-frames. The value should be provided by your external encoder and for video sources with fixed frame rates it is equivalent to dividing the current frame's presentation time (CAP_PROP_POS_MSEC) by the frame duration (1000.0 / VideoCapture::get(CAP_PROP_FPS)). It can be queried from the resulting encapsulated video file using VideoCapture::get(CAP_PROP_PTS). FFmpeg back-end only.
- VIDEOWRITER_PROP_QUALITY → const int
- Current quality (0..100%) of the encoded videostream. Can be adjusted dynamically in some codecs.
- VIDEOWRITER_PROP_RAW_VIDEO → const int
- (open-only) Set to non-zero to enable encapsulation of an encoded raw video stream. Each raw encoded video frame should be passed to VideoWriter::write() as single row or column of a CV_8UC1 Mat. \note If the key frame interval is not 1 then it must be manually specified by the user. This can either be performed during initialization passing VIDEOWRITER_PROP_KEY_INTERVAL as one of the extra encoder params to VideoWriter::VideoWriter(const String &, int, double, const Size &, const std::vector< int > ¶ms) or afterwards by setting the VIDEOWRITER_PROP_KEY_FLAG with VideoWriter::set() before writing each frame. FFMpeg backend only.
- WARP_FILL_OUTLIERS → const int
- WARP_INVERSE_MAP → const int
- WARP_POLAR_LINEAR → const int
- WARP_POLAR_LOG → const int
Functions
-
absDiff(
Mat src1, Mat src2, {Mat? dst}) → Mat - AbsDiff calculates the per-element absolute difference between two arrays or between an array and a scalar.
-
absDiffAsync(
Mat src1, Mat src2, {Mat? dst}) → Future< Mat> - AbsDiff calculates the per-element absolute difference between two arrays or between an array and a scalar.
-
accumulate(
InputArray src, InputOutputArray dst, {InputArray? mask}) → Mat - Adds the square of a source image to the accumulator image.
-
accumulateAsync(
InputArray src, InputOutputArray dst, {InputArray? mask}) → Future< Mat> - Adds the square of a source image to the accumulator image.
-
accumulateProduct(
InputArray src1, InputArray src2, InputOutputArray dst, {InputArray? mask}) → Mat - Adds the per-element product of two input images to the accumulator image.
-
accumulateProductAsync(
InputArray src1, InputArray src2, InputOutputArray dst, {InputArray? mask}) → Future< Mat> - Adds the per-element product of two input images to the accumulator image.
-
accumulateSquare(
InputArray src, InputOutputArray dst, {InputArray? mask}) → Mat - Adds the square of a source image to the accumulator image.
-
accumulateSquareAsync(
InputArray src, InputOutputArray dst, {InputArray? mask}) → Future< Mat> - Adds the square of a source image to the accumulator image.
-
accumulateWeighted(
InputArray src, InputOutputArray dst, double alpha, {InputArray? mask}) → Mat - Updates a running average.
-
accumulateWeightedAsync(
InputArray src, InputOutputArray dst, double alpha, {InputArray? mask}) → Future< Mat> - Updates a running average.
-
adaptiveThreshold(
InputArray src, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C, {OutputArray? dst}) → Mat - AdaptiveThreshold applies a fixed-level threshold to each array element.
-
adaptiveThresholdAsync(
InputArray src, double maxValue, int adaptiveMethod, int thresholdType, int blockSize, double C, {OutputArray? dst}) → Future< Mat> - AdaptiveThreshold applies a fixed-level threshold to each array element.
-
add(
Mat src1, Mat src2, {Mat? dst, int dtype = -1, Mat? mask}) → Mat - Add calculates the per-element sum of two arrays or an array and a scalar.
-
addAsync(
Mat src1, Mat src2, {Mat? dst, int dtype = -1, Mat? mask}) → Future< Mat> - Add calculates the per-element sum of two arrays or an array and a scalar.
-
addWeighted(
InputArray src1, double alpha, InputArray src2, double beta, double gamma, {OutputArray? dst, int dtype = -1}) → Mat - AddWeighted calculates the weighted sum of two arrays.
-
addWeightedAsync(
InputArray src1, double alpha, InputArray src2, double beta, double gamma, {OutputArray? dst, int dtype = -1}) → Future< Mat> - AddWeighted calculates the weighted sum of two arrays.
-
applyColorMap(
InputArray src, int colormap, {OutputArray? dst}) → Mat - ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image. colormap: ColormapTypes For further details, please see: https:///docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
-
applyColorMapAsync(
InputArray src, int colormap, {OutputArray? dst}) → Future< Mat> - ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image. colormap: ColormapTypes For further details, please see: https:///docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
-
applyCustomColorMap(
InputArray src, InputArray userColor, {OutputArray? dst}) → Mat - ApplyCustomColorMap applies a custom defined colormap on a given image.
-
applyCustomColorMapAsync(
InputArray src, InputArray userColor, {OutputArray? dst}) → Future< Mat> - ApplyCustomColorMap applies a custom defined colormap on a given image.
-
approxPolyDP(
VecPoint curve, double epsilon, bool closed) → VecPoint - ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
-
approxPolyDPAsync(
VecPoint curve, double epsilon, bool closed) → Future< VecPoint> - ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
-
arcLength(
VecPoint curve, bool closed) → double - ArcLength calculates a contour perimeter or a curve length.
-
arcLengthAsync(
VecPoint curve, bool closed) → Future< double> - ArcLength calculates a contour perimeter or a curve length.
-
arrowedLine(
InputOutputArray img, Point pt1, Point pt2, Scalar color, {int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1}) → Mat - ArrowedLine draws a arrow segment pointing from the first point to the second one.
-
arrowedLineAsync(
InputOutputArray img, Point pt1, Point pt2, Scalar color, {int thickness = 1, int line_type = 8, int shift = 0, double tipLength = 0.1}) → Future< Mat> - ArrowedLine draws a arrow segment pointing from the first point to the second one.
-
arucoDrawDetectedMarkers(
Mat img, VecVecPoint2f markerCorners, VecI32 markerIds, Scalar borderColor) → void -
arucoDrawDetectedMarkersAsync(
Mat img, VecVecPoint2f markerCorners, VecI32 markerIds, Scalar borderColor) → Future< void> -
arucoGenerateImageMarker(
PredefinedDictionaryType dictionaryId, int id, int sidePixels, int borderBits, [Mat? outImg]) → Mat -
arucoGenerateImageMarkerAsync(
PredefinedDictionaryType dictionaryId, int id, int sidePixels, int borderBits, [Mat? outImg]) → Future< Mat> -
batchDistance(
InputArray src1, InputArray src2, int dtype, {OutputArray? dist, OutputArray? nidx, int normType = NORM_L2, int K = 0, InputArray? mask, int update = 0, bool crosscheck = false}) → (Mat, Mat) - BatchDistance is a naive nearest neighbor finder.
-
batchDistanceAsync(
InputArray src1, InputArray src2, int dtype, {OutputArray? dist, OutputArray? nidx, int normType = NORM_L2, int K = 0, InputArray? mask, int update = 0, bool crosscheck = false}) → Future< (Mat, Mat)> - BatchDistance is a naive nearest neighbor finder.
-
bilateralFilter(
Mat src, int diameter, double sigmaColor, double sigmaSpace, {Mat? dst}) → Mat - BilateralFilter applies a bilateral filter to an image.
-
bilateralFilterAsync(
Mat src, int diameter, double sigmaColor, double sigmaSpace, {Mat? dst}) → Future< Mat> - BilateralFilter applies a bilateral filter to an image.
-
bitwiseAND(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Mat - BitwiseAnd computes bitwise conjunction of the two arrays (dst = src1 & src2). Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
-
bitwiseANDAsync(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Future< Mat> - BitwiseAnd computes bitwise conjunction of the two arrays (dst = src1 & src2). Calculates the per-element bit-wise conjunction of two arrays or an array and a scalar.
-
bitwiseNOT(
InputArray src, {OutputArray? dst, InputArray? mask}) → Mat - BitwiseNot inverts every bit of an array.
-
bitwiseNOTAsync(
InputArray src, {OutputArray? dst, InputArray? mask}) → Future< Mat> - BitwiseNot inverts every bit of an array.
-
bitwiseOR(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Mat - BitwiseOr calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
-
bitwiseORAsync(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Future< Mat> - BitwiseOr calculates the per-element bit-wise disjunction of two arrays or an array and a scalar.
-
bitwiseXOR(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Mat - BitwiseXor calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.
-
bitwiseXORAsync(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask}) → Future< Mat> - BitwiseXor calculates the per-element bit-wise "exclusive or" operation on two arrays or an array and a scalar.
-
blobFromImage(
InputArray image, {double scalefactor = 1.0, (int, int) size = (0, 0), Scalar? mean, bool swapRB = false, bool crop = false, int ddepth = MatType.CV_32F}) → Mat - Creates 4-dimensional blob from image. Optionally resizes and crops image from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels.
-
blobFromImageAsync(
InputArray image, {double scalefactor = 1.0, (int, int) size = (0, 0), Scalar? mean, bool swapRB = false, bool crop = false, int ddepth = MatType.CV_32F}) → Future< Mat> -
blobFromImages(
VecMat images, {Mat? blob, double scalefactor = 1.0, (int, int) size = (0, 0), Scalar? mean, bool swapRB = false, bool crop = false, int ddepth = MatType.CV_32F}) → Mat - Creates 4-dimensional blob from series of images. Optionally resizes and crops images from center, subtract mean values, scales values by scalefactor, swap Blue and Red channels. https://docs.opencv.org/4.x/d6/d0f/group__dnn.html#ga0b7b7c3c530b747ef738178835e1e70f
-
blobFromImagesAsync(
VecMat images, {Mat? blob, double scalefactor = 1.0, (int, int) size = (0, 0), Scalar? mean, bool swapRB = false, bool crop = false, int ddepth = MatType.CV_32F}) → Future< Mat> -
blur(
Mat src, (int, int) ksize, {Mat? dst}) → Mat - Blur blurs an image Mat using a normalized box filter.
-
blurAsync(
Mat src, (int, int) ksize, {Mat? dst}) → Future< Mat> - Blur blurs an image Mat using a normalized box filter.
-
borderInterpolate(
int p, int len, int borderType) → int - BorderInterpolate computes the source location of an extrapolated pixel.
-
borderInterpolateAsync(
int p, int len, int borderType) → Future< int> - BorderInterpolate computes the source location of an extrapolated pixel.
-
boundingRect(
VecPoint points) → Rect - BoundingRect calculates the up-right bounding rectangle of a point set.
-
boundingRectAsync(
VecPoint points) → Future< Rect> - BoundingRect calculates the up-right bounding rectangle of a point set.
-
boxFilter(
Mat src, int depth, (int, int) ksize, {Point? anchor, bool normalize = true, int borderType = BORDER_DEFAULT, Mat? dst}) → Mat - BoxFilter blurs an image using the box filter.
-
boxFilterAsync(
Mat src, int depth, (int, int) ksize, {Point? anchor, bool normalize = true, int borderType = BORDER_DEFAULT, Mat? dst}) → Future< Mat> - BoxFilter blurs an image using the box filter.
-
boxPoints(
RotatedRect rect, {VecPoint2f? pts}) → VecPoint2f - BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
-
boxPointsAsync(
RotatedRect rect, {VecPoint2f? pts}) → Future< VecPoint2f> - BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
-
calcBackProject(
VecMat src, VecI32 channels, Mat hist, VecF32 ranges, {Mat? dst, double scale = 1.0}) → Mat - CalcBackProject calculates the back projection of a histogram.
-
calcBackProjectAsync(
VecMat src, VecI32 channels, Mat hist, VecF32 ranges, {Mat? dst, double scale = 1.0}) → Future< Mat> - CalcBackProject calculates the back projection of a histogram.
-
calcCovarMatrix(
InputArray samples, InputOutputArray mean, int flags, {OutputArray? covar, int ctype = MatType.CV_64F}) → (Mat, Mat) - CalcCovarMatrix calculates the covariance matrix of a set of vectors.
-
calcCovarMatrixAsync(
InputArray samples, InputOutputArray mean, int flags, {OutputArray? covar, int ctype = MatType.CV_64F}) → Future< (Mat, Mat)> - CalcCovarMatrix calculates the covariance matrix of a set of vectors.
-
calcHist(
VecMat src, VecI32 channels, Mat mask, VecI32 histSize, VecF32 ranges, {Mat? hist, bool accumulate = false}) → Mat - CalcHist Calculates a histogram of a set of images
-
calcHistAsync(
VecMat src, VecI32 channels, Mat mask, VecI32 histSize, VecF32 ranges, {Mat? hist, bool accumulate = false}) → Future< Mat> - CalcHist Calculates a histogram of a set of images
-
calcOpticalFlowFarneback(
InputArray prev, InputArray next, InputOutputArray flow, double pyrScale, int levels, int winsize, int iterations, int polyN, double polySigma, int flags) → Mat - Apply computes a foreground mask using the current BackgroundSubtractorMOG2.
-
calcOpticalFlowFarnebackAsync(
InputArray prev, InputArray next, InputOutputArray flow, double pyrScale, int levels, int winsize, int iterations, int polyN, double polySigma, int flags) → Future< Mat> - Apply computes a foreground mask using the current BackgroundSubtractorMOG2.
-
calcOpticalFlowPyrLK(
InputArray prevImg, InputArray nextImg, VecPoint2f prevPts, VecPoint2f nextPts, {VecUChar? status, VecF32? err, (int, int) winSize = (21, 21), int maxLevel = 3, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4), int flags = 0, double minEigThreshold = 1e-4}) → (VecPoint2f, VecUChar?, VecF32?) - CalcOpticalFlowPyrLK calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.
-
calcOpticalFlowPyrLKAsync(
InputArray prevImg, InputArray nextImg, VecPoint2f prevPts, VecPoint2f nextPts, {VecUChar? status, VecF32? err, (int, int) winSize = (21, 21), int maxLevel = 3, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4), int flags = 0, double minEigThreshold = 1e-4}) → Future< (VecPoint2f, VecUChar, VecF32)> - CalcOpticalFlowPyrLK calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with pyramids.
-
calibrateCamera(
Contours3f objectPoints, Contours2f imagePoints, (int, int) imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, {Mat? rvecs, Mat? tvecs, int flags = 0, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)}) → (double, Mat, Mat, Mat, Mat) - CalibrateCamera finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
-
calibrateCameraAsync(
Contours3f objectPoints, Contours2f imagePoints, (int, int) imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, {Mat? rvecs, Mat? tvecs, int flags = 0, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)}) → Future< (double, Mat, Mat, Mat, Mat)> -
canny(
Mat image, double threshold1, double threshold2, {OutputArray? edges, int apertureSize = 3, bool l2gradient = false}) → Mat - Canny finds edges in an image using the Canny algorithm. The function finds edges in the input image image and marks them in the output map edges using the Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The largest value is used to find initial segments of strong edges. See http:///en.wikipedia.org/wiki/Canny_edge_detector
-
cannyAsync(
Mat image, double threshold1, double threshold2, {OutputArray? edges, int apertureSize = 3, bool l2gradient = false}) → Future< Mat> - Canny finds edges in an image using the Canny algorithm. The function finds edges in the input image image and marks them in the output map edges using the Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The largest value is used to find initial segments of strong edges. See http:///en.wikipedia.org/wiki/Canny_edge_detector
-
cartToPolar(
InputArray x, InputArray y, {OutputArray? magnitude, OutputArray? angle, bool angleInDegrees = false}) → (Mat, Mat) - CartToPolar calculates the magnitude and angle of 2D vectors.
-
cartToPolarAsync(
InputArray x, InputArray y, {OutputArray? magnitude, OutputArray? angle, bool angleInDegrees = false}) → Future< (Mat, Mat)> - CartToPolar calculates the magnitude and angle of 2D vectors.
-
checkChessboard(
Mat img, Size size) → bool - https://docs.opencv.org/4.11.0/d9/d0c/group__calib3d.html#gacd8162cfd39138d0bc29e4b53d080673
-
checkRange(
InputArray a, {bool quiet = true, double minVal = -CV_F64_MAX, double maxVal = CV_F64_MAX}) → (bool, Point) - CheckRange checks every element of an input array for invalid values.
-
checkRangeAsync(
InputArray a, {bool quiet = true, double minVal = -CV_F64_MAX, double maxVal = CV_F64_MAX}) → Future< (bool, Point)> - CheckRange checks every element of an input array for invalid values.
-
circle(
InputOutputArray img, Point center, int radius, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Mat - CircleWithParams draws a circle.
-
circleAsync(
InputOutputArray img, Point center, int radius, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Future< Mat> - CircleWithParams draws a circle.
-
clipLine(
Rect imgRect, Point pt1, Point pt2) → (bool, Point, Point) - ClipLine clips the line against the image rectangle. For further details, please see: https:///docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf483cb46ad6b049bc35ec67052ef1c2c
-
clipLineAsync(
Rect imgRect, Point pt1, Point pt2) → Future< (bool, Point, Point)> - ClipLine clips the line against the image rectangle. For further details, please see: https:///docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf483cb46ad6b049bc35ec67052ef1c2c
-
colorChange(
InputArray src, InputArray mask, {double redMul = 1.0, double greenMul = 1.0, double blueMul = 1.0}) → Mat - ColorChange mix two differently colored versions of an image seamlessly. For further details, please see: https://docs.opencv.org/master/df/da0/group__photo__clone.html#ga6684f35dc669ff6196a7c340dc73b98e
-
colorChangeAsync(
InputArray src, InputArray mask, {double redMul = 1.0, double greenMul = 1.0, double blueMul = 1.0}) → Future< Mat> -
compare(
InputArray src1, InputArray src2, int cmpop, {OutputArray? dst}) → Mat - Compare performs the per-element comparison of two arrays or an array and scalar value.
-
compareAsync(
InputArray src1, InputArray src2, int cmpop, {OutputArray? dst}) → Future< Mat> - Compare performs the per-element comparison of two arrays or an array and scalar value.
-
compareHist(
Mat hist1, Mat hist2, {int method = 0}) → double - CompareHist Compares two histograms. mode: HistCompMethods For further details, please see: https:///docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
-
compareHistAsync(
Mat hist1, Mat hist2, {int method = 0}) → Future< double> - CompareHist Compares two histograms. mode: HistCompMethods For further details, please see: https:///docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
-
completeSymm(
InputOutputArray m, {bool lowerToUpper = false}) → Mat - CompleteSymm copies the lower or the upper half of a square matrix to its another half.
-
completeSymmAsync(
InputOutputArray m, {bool lowerToUpper = false}) → Future< Mat> - CompleteSymm copies the lower or the upper half of a square matrix to its another half.
-
computeCorrespondEpilines(
InputArray points, int whichImage, InputArray F, {OutputArray? lines}) → Mat - For points in an image of a stereo pair, computes the corresponding epilines in the other image.
-
computeCorrespondEpilinesAsync(
InputArray points, int whichImage, InputArray F, {OutputArray? lines}) → Future< Mat> - For points in an image of a stereo pair, computes the corresponding epilines in the other image.
-
connectedComponents(
Mat image, Mat labels, int connectivity, int ltype, int ccltype) → int - ConnectedComponents computes the connected components labeled image of boolean image.
-
connectedComponentsAsync(
Mat image, OutputArray labels, int connectivity, int ltype, int ccltype) → Future< int> - ConnectedComponents computes the connected components labeled image of boolean image.
-
connectedComponentsWithStats(
Mat src, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype) → int - ConnectedComponentsWithStats computes the connected components labeled image of boolean image and also produces a statistics output for each label.
-
connectedComponentsWithStatsAsync(
Mat src, Mat labels, Mat stats, Mat centroids, int connectivity, int ltype, int ccltype) → Future< int> - ConnectedComponentsWithStats computes the connected components labeled image of boolean image and also produces a statistics output for each label.
-
contourArea(
VecPoint contour) → double - ContourArea calculates a contour area.
-
contourAreaAsync(
VecPoint contour) → Future< double> - ContourArea calculates a contour area.
-
convertPointsFromHomogeneous(
InputArray src, {OutputArray? dst}) → Mat - Converts points from homogeneous to Euclidean space.
-
convertPointsFromHomogeneousAsync(
InputArray src, {OutputArray? dst}) → Future< Mat> - Converts points from homogeneous to Euclidean space.
-
convertPointsToHomogeneous(
InputArray src, {OutputArray? dst}) → Mat - Converts points from Euclidean to homogeneous space.
-
convertPointsToHomogeneousAsync(
InputArray src, {OutputArray? dst}) → Future< Mat> - Converts points from Euclidean to homogeneous space.
-
convertScaleAbs(
InputArray src, {OutputArray? dst, double alpha = 1, double beta = 0}) → Mat - ConvertScaleAbs scales, calculates absolute values, and converts the result to 8-bit.
-
convertScaleAbsAsync(
InputArray src, {OutputArray? dst, double alpha = 1, double beta = 0}) → Future< Mat> - ConvertScaleAbs scales, calculates absolute values, and converts the result to 8-bit.
-
convexHull(
VecPoint points, {Mat? hull, bool clockwise = false, bool returnPoints = true}) → Mat - ConvexHull finds the convex hull of a point set.
-
convexHullAsync(
VecPoint points, {Mat? hull, bool clockwise = false, bool returnPoints = true}) → Future< Mat> - ConvexHull finds the convex hull of a point set.
-
convexityDefects(
VecPoint contour, Mat hull, {Mat? convexityDefects}) → Mat - ConvexityDefects finds the convexity defects of a contour.
-
convexityDefectsAsync(
VecPoint contour, Mat hull, {Mat? convexityDefects}) → Future< Mat> - ConvexityDefects finds the convexity defects of a contour.
-
copyMakeBorder(
InputArray src, int top, int bottom, int left, int right, int borderType, {OutputArray? dst, Scalar? value}) → Mat - CopyMakeBorder forms a border around an image (applies padding).
-
copyMakeBorderAsync(
InputArray src, int top, int bottom, int left, int right, int borderType, {OutputArray? dst, Scalar? value}) → Future< Mat> - CopyMakeBorder forms a border around an image (applies padding).
-
copyTo(
InputArray src, InputArray dst, {InputArray? mask}) → Mat - CopyTo
-
copyToAsync(
InputArray src, InputArray dst, {InputArray? mask}) → Future< Mat> - CopyTo
-
cornerSubPix(
InputArray image, VecPoint2f corners, (int, int) winSize, (int, int) zeroZone, [(int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)]) → VecPoint2f - CornerSubPix Refines the corner locations. The function iterates to find the sub-pixel accurate location of corners or radial saddle points.
-
cornerSubPixAsync(
InputArray image, VecPoint2f corners, (int, int) winSize, (int, int) zeroZone, [(int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)]) → Future< VecPoint2f> - CornerSubPix Refines the corner locations. The function iterates to find the sub-pixel accurate location of corners or radial saddle points.
-
correctMatches(
Mat F, InputArray points1, InputArray points2, {OutputArray? newPoints1, OutputArray? newPoints2}) → (Mat, Mat) - Refines coordinates of corresponding points.
-
correctMatchesAsync(
Mat F, InputArray points1, InputArray points2, {OutputArray? newPoints1, OutputArray? newPoints2}) → Future< (Mat, Mat)> - Refines coordinates of corresponding points.
-
countNonZero(
Mat src) → int - CountNonZero counts non-zero array elements.
-
createBackgroundSubtractorMOG2(
{int history = 500, double varThreshold = 16, bool detectShadows = true}) → BackgroundSubtractorMOG2 - NewBackgroundSubtractorMOG2 returns a new BackgroundSubtractor algorithm of type MOG2. MOG2 is a Gaussian Mixture-based Background/Foreground Segmentation Algorithm.
-
createCLAHE(
{double clipLimit = 40, (int, int) tileGridSize = (8, 8)}) → CLAHE -
createTrackbar(
String trackbarName, String winName, int maxval, {Dartcv_TrackbarCallbackFunction? onChange}) → void -
currentUIFramework(
) → String -
cvAssert(
bool condition, [String? msg]) → void -
cvRun(
Pointer< CvStatus> func()) → void -
cvRunArena<
R> (R computation(Arena arena), [Allocator wrappedAllocator = calloc, bool keep = false]) → R -
cvRunAsync0<
T> (Pointer< CvStatus> func(CvCallback_0 callback), void onComplete(Completer<T> completer)) → Future<T> -
cvRunAsync1<
T> (Pointer< CvStatus> func(CvCallback_1 callback), void onComplete(Completer<T> completer, VoidPtr p)) → Future<T> -
cvRunAsync2<
T> (Pointer< CvStatus> func(CvCallback_2 callback), void onComplete(Completer<T> completer, VoidPtr p, VoidPtr p1)) → Future<T> -
cvRunAsync3<
T> (Pointer< CvStatus> func(CvCallback_3 callback), void onComplete(Completer<T> completer, VoidPtr p, VoidPtr p1, VoidPtr p2)) → Future<T> -
cvRunAsync4<
T> (Pointer< CvStatus> func(CvCallback_4 callback), void onComplete(Completer<T> completer, VoidPtr p, VoidPtr p1, VoidPtr p2, VoidPtr p3)) → Future<T> -
cvRunAsync5<
T> (Pointer< CvStatus> func(CvCallback_5 callback), void onComplete(Completer<T> completer, VoidPtr p, VoidPtr p1, VoidPtr p2, VoidPtr p3, VoidPtr p4)) → Future<T> -
cvtColor(
Mat src, int code, {Mat? dst}) → Mat - CvtColor converts an image from one color space to another. It converts the src Mat image to the dst Mat using the code param containing the desired ColorConversionCode color space.
-
cvtColorAsync(
Mat src, int code, {Mat? dst}) → Future< Mat> - CvtColor converts an image from one color space to another. It converts the src Mat image to the dst Mat using the code param containing the desired ColorConversionCode color space.
-
dct(
InputArray src, {OutputArray? dst, int flags = 0}) → Mat - DCT performs a forward or inverse discrete Cosine transform of 1D or 2D array.
-
dctAsync(
InputArray src, {OutputArray? dst, int flags = 0}) → Future< Mat> - DCT performs a forward or inverse discrete Cosine transform of 1D or 2D array.
-
decomposeEssentialMat(
Mat E, {OutputArray? R1, OutputArray? R2, OutputArray? t}) → (Mat, Mat, Mat) - Decompose an essential matrix to possible rotations and translation.
-
decomposeEssentialMatAsync(
Mat E, {OutputArray? R1, OutputArray? R2, OutputArray? t}) → Future< (Mat, Mat, Mat)> - Decompose an essential matrix to possible rotations and translation.
-
decomposeHomographyMat(
Mat H, Mat K, {VecMat? rotations, VecMat? translations, VecMat? normals}) → (int, VecMat, VecMat, VecMat) - Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
-
decomposeHomographyMatAsync(
Mat H, Mat K, {VecMat? rotations, VecMat? translations, VecMat? normals}) → Future< (int, VecMat, VecMat, VecMat)> - Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
-
decomposeProjectionMatrix(
Mat projMatrix, {OutputArray? cameraMatrix, OutputArray? rotMatrix, OutputArray? transVect, OutputArray? rotMatrixX, OutputArray? rotMatrixY, OutputArray? rotMatrixZ, OutputArray? eulerAngles}) → (Mat, Mat, Mat) - Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
-
decomposeProjectionMatrixAsync(
Mat projMatrix, {OutputArray? cameraMatrix, OutputArray? rotMatrix, OutputArray? transVect, OutputArray? rotMatrixX, OutputArray? rotMatrixY, OutputArray? rotMatrixZ, OutputArray? eulerAngles}) → Future< (Mat, Mat, Mat)> - Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.
-
destroyAllWindows(
) → void - destroy all windows.
-
destroyWindow(
String winName) → void -
detailEnhance(
InputArray src, {double sigmaS = 10, double sigmaR = 0.15}) → Mat - DetailEnhance filter enhances the details of a particular image For further details, please see: https://docs.opencv.org/4.x/df/dac/group__photo__render.html#ga0de660cb6f371a464a74c7b651415975
-
detailEnhanceAsync(
InputArray src, {double sigmaS = 10, double sigmaR = 0.15}) → Future< Mat> -
determinant(
InputArray mtx) → double - Determinant returns the determinant of a square floating-point matrix.
-
determinantAsync(
InputArray mtx) → Future< double> - Determinant returns the determinant of a square floating-point matrix.
-
dft(
InputArray src, {OutputArray? dst, int flags = 0, int nonzeroRows = 0}) → Mat - DFT performs a forward or inverse Discrete Fourier Transform (DFT) of a 1D or 2D floating-point array.
-
dftAsync(
InputArray src, {OutputArray? dst, int flags = 0, int nonzeroRows = 0}) → Future< Mat> - DFT performs a forward or inverse Discrete Fourier Transform (DFT) of a 1D or 2D floating-point array.
-
dilate(
Mat src, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Mat - Dilate dilates an image by using a specific structuring element.
-
dilateAsync(
Mat src, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - Dilate dilates an image by using a specific structuring element.
-
distanceTransform(
Mat src, int distanceType, int maskSize, int labelType, {Mat? dst, Mat? labels}) → (Mat, Mat) - DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
-
distanceTransformAsync(
Mat src, int distanceType, int maskSize, int labelType, {Mat? dst, Mat? labels}) → Future< (Mat, Mat)> - DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
-
divide(
InputArray src1, InputArray src2, {OutputArray? dst, double scale = 1, int dtype = -1}) → Mat - Divide performs the per-element division on two arrays or an array and a scalar.
-
divideAsync(
InputArray src1, InputArray src2, {OutputArray? dst, double scale = 1, int dtype = -1}) → Future< Mat> - Divide performs the per-element division on two arrays or an array and a scalar.
-
drawChessboardCorners(
InputOutputArray image, (int, int) patternSize, VecPoint2f corners, bool patternWasFound) → Mat - DrawChessboardCorners renders the detected chessboard corners.
-
drawChessboardCornersAsync(
InputOutputArray image, (int, int) patternSize, VecPoint2f corners, bool patternWasFound) → Future< Mat> -
drawContours(
InputOutputArray image, Contours contours, int contourIdx, Scalar color, {int thickness = 1, int lineType = LINE_8, InputArray? hierarchy, int maxLevel = 0x3f3f3f3f, Point? offset}) → Mat - DrawContours draws contours outlines or filled contours.
-
drawContoursAsync(
InputOutputArray image, Contours contours, int contourIdx, Scalar color, {int thickness = 1, int lineType = LINE_8, InputArray? hierarchy, int maxLevel = 0x3f3f3f3f, Point? offset}) → Future< Mat> - DrawContours draws contours outlines or filled contours.
-
drawFrameAxes(
Mat image, Mat cameraMatrix, Mat distCoeffs, Mat rvec, Mat tvec, double length, {int thickness = 3}) → void - Draw axes of the world/object coordinate system from pose estimation.
-
drawFrameAxesAsync(
Mat image, Mat cameraMatrix, Mat distCoeffs, Mat rvec, Mat tvec, double length, {int thickness = 3}) → Future< void> - Draw axes of the world/object coordinate system from pose estimation.
-
drawKeyPoints(
Mat src, VecKeyPoint keypoints, Mat dst, Scalar color, DrawMatchesFlag flag) → void -
drawKeyPointsAsync(
Mat src, VecKeyPoint keypoints, Mat dst, Scalar color, DrawMatchesFlag flag) → Future< void> -
drawMatches(
InputArray img1, VecKeyPoint keypoints1, InputArray img2, VecKeyPoint keypoints2, VecDMatch matches1to2, InputOutputArray outImg, {Scalar? matchColor, Scalar? singlePointColor, VecChar? matchesMask, DrawMatchesFlag flags = DrawMatchesFlag.DEFAULT}) → void - DrawMatches draws matches on combined train and querry images.
-
drawMatchesAsync(
InputArray img1, VecKeyPoint keypoints1, InputArray img2, VecKeyPoint keypoints2, VecDMatch matches1to2, InputOutputArray outImg, {Scalar? matchColor, Scalar? singlePointColor, VecChar? matchesMask, DrawMatchesFlag flags = DrawMatchesFlag.DEFAULT}) → Future< void> - DrawMatches draws matches on combined train and querry images.
-
edgePreservingFilter(
InputArray src, {int flags = 1, double sigmaS = 60, double sigmaR = 0.4}) → Mat - EdgePreservingFilter filtering is the fundamental operation in image and video processing. Edge-preserving smoothing filters are used in many different applications. For further details, please see: https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gafaee2977597029bc8e35da6e67bd31f7
-
edgePreservingFilterAsync(
InputArray src, {int flags = 1, double sigmaS = 60, double sigmaR = 0.4}) → Future< Mat> -
eigen(
InputArray src, {OutputArray? eigenvalues, OutputArray? eigenvectors}) → (bool, Mat, Mat) - Eigen calculates eigenvalues and eigenvectors of a symmetric matrix.
-
eigenAsync(
InputArray src, {OutputArray? eigenvalues, OutputArray? eigenvectors}) → Future< (bool, Mat, Mat)> - Eigen calculates eigenvalues and eigenvectors of a symmetric matrix.
-
eigenNonSymmetric(
InputArray src, {OutputArray? eigenvalues, OutputArray? eigenvectors}) → (Mat, Mat) - EigenNonSymmetric calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
-
eigenNonSymmetricAsync(
InputArray src, {OutputArray? eigenvalues, OutputArray? eigenvectors}) → Future< (Mat, Mat)> - EigenNonSymmetric calculates eigenvalues and eigenvectors of a non-symmetric matrix (real eigenvalues only).
-
ellipse(
InputOutputArray img, Point center, Point axes, double angle, double startAngle, double endAngle, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Mat - Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
-
ellipseAsync(
InputOutputArray img, Point center, Point axes, double angle, double startAngle, double endAngle, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Future< Mat> - Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
-
enableModelDiagnostics(
bool isDiagnosticsMode) → void -
equalizeHist(
Mat src, {Mat? dst}) → Mat - EqualizeHist Equalizes the histogram of a grayscale image.
-
equalizeHistAsync(
Mat src, {Mat? dst}) → Future< Mat> - EqualizeHist Equalizes the histogram of a grayscale image.
-
erode(
Mat src, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Mat - Erode erodes an image by using a specific structuring element.
-
erodeAsync(
Mat src, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - Erode erodes an image by using a specific structuring element.
-
estimateAffine2D(
VecPoint2f from, VecPoint2f to, {int method = RANSAC, double ransacReprojThreshold = 3, int maxIters = 2000, double confidence = 0.99, int refineIters = 10, OutputArray? inliers}) → (Mat, Mat) - EstimateAffine2D Computes an optimal affine transformation between two 2D point sets.
-
estimateAffine2DAsync(
VecPoint2f from, VecPoint2f to, {int method = RANSAC, double ransacReprojThreshold = 3, int maxIters = 2000, double confidence = 0.99, int refineIters = 10, OutputArray? inliers}) → Future< (Mat, Mat)> -
estimateAffine3D(
Mat src, Mat dst, {Mat? out, Mat? inliers, double ransacThreshold = 3, double confidence = 0.99}) → (int, Mat, Mat) - Computes an optimal affine transformation between two 3D point sets.
-
estimateAffine3DAsync(
Mat src, Mat dst, {Mat? out, Mat? inliers, double ransacThreshold = 3, double confidence = 0.99}) → Future< (int, Mat, Mat)> - Computes an optimal affine transformation between two 3D point sets.
-
estimateAffinePartial2D(
VecPoint2f from, VecPoint2f to, {int method = RANSAC, double ransacReprojThreshold = 3, int maxIters = 2000, double confidence = 0.99, int refineIters = 10, OutputArray? inliers}) → (Mat, Mat) - EstimateAffinePartial2D computes an optimal limited affine transformation with 4 degrees of freedom between two 2D point sets.
-
estimateAffinePartial2DAsync(
VecPoint2f from, VecPoint2f to, {int method = RANSAC, double ransacReprojThreshold = 3, int maxIters = 2000, double confidence = 0.99, int refineIters = 10, OutputArray? inliers}) → Future< (Mat, Mat)> -
estimateChessboardSharpness(
InputArray image, (int, int) patternSize, InputArray corners, {double riseDistance = 0.8, bool vertical = false, OutputArray? sharpness}) → Scalar - Estimates the sharpness of a detected chessboard.
-
estimateChessboardSharpnessAsync(
InputArray image, (int, int) patternSize, InputArray corners, {double riseDistance = 0.8, bool vertical = false, OutputArray? sharpness}) → Future< Scalar> - Estimates the sharpness of a detected chessboard.
-
estimateTranslation3D(
InputArray src, InputArray dst, {OutputArray? out, OutputArray? inliers, double ransacThreshold = 3, double confidence = 0.99}) → (int, Mat, Mat) - Computes an optimal translation between two 3D point sets.
-
estimateTranslation3DAsync(
InputArray src, InputArray dst, {OutputArray? out, OutputArray? inliers, double ransacThreshold = 3, double confidence = 0.99}) → Future< (int, Mat, Mat)> - Computes an optimal translation between two 3D point sets.
-
exp(
InputArray src, {OutputArray? dst}) → Mat - Exp calculates the exponent of every array element.
-
expAsync(
InputArray src, {OutputArray? dst}) → Future< Mat> - Exp calculates the exponent of every array element.
-
extractChannel(
InputArray src, int coi, {OutputArray? dst}) → Mat - ExtractChannel extracts a single channel from src (coi is 0-based index).
-
extractChannelAsync(
InputArray src, int coi, {OutputArray? dst}) → Future< Mat> - ExtractChannel extracts a single channel from src (coi is 0-based index).
-
fastNlMeansDenoising(
InputArray src, {double h = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Mat - FastNlMeansDenoising performs image denoising using Non-local Means Denoising algorithm http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/ For further details, please see: https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga4c6b0031f56ea3f98f768881279ffe93
-
fastNlMeansDenoisingAsync(
InputArray src, {double h = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Future< Mat> -
fastNlMeansDenoisingColored(
InputArray src, {double h = 3, double hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Mat - FastNlMeansDenoisingColored is a modification of fastNlMeansDenoising function for colored images. For further details, please see: https://docs.opencv.org/4.x/d1/d79/group__photo__denoise.html#ga21abc1c8b0e15f78cd3eff672cb6c476
-
fastNlMeansDenoisingColoredAsync(
InputArray src, {double h = 3, double hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Future< Mat> -
fastNlMeansDenoisingColoredMulti(
VecMat srcImgs, int imgToDenoiseIndex, int temporalWindowSize, {double h = 3, double hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Mat - FastNlMeansDenoisingColoredMulti denoises the selected images. For further details, please see: https://docs.opencv.org/master/d1/d79/group__photo__denoise.html#gaa501e71f52fb2dc17ff8ca5e7d2d3619
-
fastNlMeansDenoisingColoredMultiAsync(
VecMat srcImgs, int imgToDenoiseIndex, int temporalWindowSize, {double h = 3, double hColor = 3, int templateWindowSize = 7, int searchWindowSize = 21}) → Future< Mat> -
fillPoly(
InputOutputArray img, VecVecPoint pts, Scalar color, {int lineType = LINE_8, int shift = 0, Point? offset}) → Mat - FillPolyWithParams fills the area bounded by one or more polygons.
-
fillPolyAsync(
InputOutputArray img, VecVecPoint pts, Scalar color, {int lineType = LINE_8, int shift = 0, Point? offset}) → Future< Mat> - FillPolyWithParams fills the area bounded by one or more polygons.
-
filter2D(
InputArray src, int ddepth, InputArray kernel, {OutputArray? dst, Point? anchor, double delta = 0, int borderType = BORDER_DEFAULT}) → Mat - Filter2D applies an arbitrary linear filter to an image.
-
filter2DAsync(
InputArray src, int ddepth, InputArray kernel, {OutputArray? dst, Point? anchor, double delta = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - Filter2D applies an arbitrary linear filter to an image.
-
filterHomographyDecompByVisibleRefpoints(
VecMat rotations, VecMat normals, InputArray beforePoints, InputArray afterPoints, {OutputArray? possibleSolutions, InputArray? pointsMask}) → Mat - Filters homography decompositions based on additional information.
-
filterHomographyDecompByVisibleRefpointsAsync(
VecMat rotations, VecMat normals, InputArray beforePoints, InputArray afterPoints, {OutputArray? possibleSolutions, InputArray? pointsMask}) → Future< Mat> - Filters homography decompositions based on additional information.
-
filterSpeckles(
InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff, {OutputArray? buf}) → void - Filters off small noise blobs (speckles) in the disparity map.
-
filterSpecklesAsync(
InputOutputArray img, double newVal, int maxSpeckleSize, double maxDiff, {OutputArray? buf}) → Future< void> - Filters off small noise blobs (speckles) in the disparity map.
-
find4QuadCornerSubpix(
InputArray img, InputOutputArray corners, (int, int) regionSize) → bool - finds subpixel-accurate positions of the chessboard corners
-
find4QuadCornerSubpixAsync(
InputArray img, InputOutputArray corners, (int, int) regionSize) → Future< bool> - finds subpixel-accurate positions of the chessboard corners
-
findChessboardCorners(
InputArray image, (int, int) patternSize, {VecPoint2f? corners, int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE}) → (bool, VecPoint2f) - FindChessboardCorners finds the positions of internal corners of the chessboard.
-
findChessboardCornersAsync(
InputArray image, (int, int) patternSize, {VecPoint2f? corners, int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE}) → Future< (bool, VecPoint2f)> -
findChessboardCornersSB(
InputArray image, (int, int) patternSize, {int flags = 0, VecPoint2f? corners}) → (bool, VecPoint2f) - Finds the positions of internal corners of the chessboard using a sector based approach.
-
findChessboardCornersSBAsync(
InputArray image, (int, int) patternSize, int flags, {VecPoint2f? corners}) → Future< (bool, VecPoint2f)> -
findChessboardCornersSBWithMeta(
InputArray image, (int, int) patternSize, int flags, {VecPoint2f? corners, OutputArray? meta}) → (bool, VecPoint2f, Mat) - Finds the positions of internal corners of the chessboard using a sector based approach.
-
findChessboardCornersSBWithMetaAsync(
InputArray image, (int, int) patternSize, int flags, {VecPoint2f? corners, OutputArray? meta}) → Future< (bool, VecPoint2f, Mat)> -
findCirclesGrid(
InputArray image, Size patternSize, {int flags = CALIB_CB_SYMMETRIC_GRID, OutputArray? centers}) → (bool, Mat) - Finds centers in the grid of circles.
-
findCirclesGridAsync(
InputArray image, Size patternSize, {int flags = CALIB_CB_SYMMETRIC_GRID, OutputArray? centers}) → Future< (bool, Mat)> - Finds centers in the grid of circles.
-
findContours(
Mat src, int mode, int method) → (Contours, VecVec4i) - FindContours finds contours in a binary image.
-
findContoursAsync(
Mat src, int mode, int method) → Future< (Contours, VecVec4i)> - FindContours finds contours in a binary image.
-
findEssentialMat(
InputArray points1, InputArray points2, {double focal = 1.0, Point2d? pp, int method = RANSAC, double prob = 0.999, double threshold = 1.0, int maxIters = 1000, OutputArray? mask}) → Mat - Calculates an essential matrix from the corresponding points in two images.
-
findEssentialMatAsync(
InputArray points1, InputArray points2, {double focal = 1.0, Point2d? pp, int method = RANSAC, double prob = 0.999, double threshold = 1.0, int maxIters = 1000, OutputArray? mask}) → Future< Mat> - Calculates an essential matrix from the corresponding points in two images.
-
findEssentialMatCameraMatrix(
InputArray points1, InputArray points2, InputArray cameraMatrix, {int method = RANSAC, double prob = 0.999, double threshold = 1.0, int maxIters = 1000, OutputArray? mask}) → Mat - Calculates an essential matrix from the corresponding points in two images.
-
findEssentialMatCameraMatrixAsync(
InputArray points1, InputArray points2, InputArray cameraMatrix, {int method = RANSAC, double prob = 0.999, double threshold = 1.0, int maxIters = 1000, OutputArray? mask}) → Future< Mat> - Calculates an essential matrix from the corresponding points in two images.
-
findFundamentalMat(
InputArray points1, InputArray points2, {int method = FM_RANSAC, double ransacReprojThreshold = 3, double confidence = 0.99, int maxIters = 1000, OutputArray? mask}) → Mat - Calculates a fundamental matrix from the corresponding points in two images.
-
findFundamentalMatAsync(
InputArray points1, InputArray points2, {int method = FM_RANSAC, double ransacReprojThreshold = 3, double confidence = 0.99, int maxIters = 1000, OutputArray? mask}) → Future< Mat> - Calculates a fundamental matrix from the corresponding points in two images.
-
findFundamentalMatUsac(
InputArray points1, InputArray points2, UsacParams params, {OutputArray? mask}) → Mat - Calculates a fundamental matrix from the corresponding points in two images.
-
findFundamentalMatUsacAsync(
InputArray points1, InputArray points2, UsacParams params, {OutputArray? mask}) → Future< Mat> - Calculates a fundamental matrix from the corresponding points in two images.
-
findHomography(
InputArray srcPoints, InputArray dstPoints, {int method = 0, double ransacReprojThreshold = 3, OutputArray? mask, int maxIters = 2000, double confidence = 0.995}) → Mat - FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
-
findHomographyAsync(
InputArray srcPoints, InputArray dstPoints, {int method = 0, double ransacReprojThreshold = 3, OutputArray? mask, int maxIters = 2000, double confidence = 0.995}) → Future< (Mat, Mat)> - FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
-
findHomographyUsac(
InputArray srcPoints, InputArray dstPoints, UsacParams params, {OutputArray? mask}) → Mat - FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
-
findHomographyUsacAsync(
InputArray srcPoints, InputArray dstPoints, UsacParams params, {OutputArray? mask}) → Future< Mat> - FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
-
findNonZero(
InputArray src, {OutputArray? idx}) → Mat - FindNonZero returns the list of locations of non-zero pixels.
-
findNonZeroAsync(
InputArray src, {OutputArray? idx}) → Future< Mat> - FindNonZero returns the list of locations of non-zero pixels.
-
findTransformECC(
InputArray templateImage, InputArray inputImage, InputOutputArray warpMatrix, int motionType, (int, int, double) criteria, InputArray inputMask, int gaussFiltSize) → (double, Mat) - FindTransformECC finds the geometric transform (warp) between two images in terms of the ECC criterion.
-
findTransformECCAsync(
InputArray templateImage, InputArray inputImage, InputOutputArray warpMatrix, int motionType, (int, int, double) criteria, InputArray inputMask, int gaussFiltSize) → Future< (double, Mat)> - FindTransformECC finds the geometric transform (warp) between two images in terms of the ECC criterion.
-
fitEllipse(
VecPoint points) → RotatedRect - FitEllipse Fits an ellipse around a set of 2D points.
-
fitEllipseAsync(
VecPoint points) → Future< RotatedRect> - FitEllipse Fits an ellipse around a set of 2D points.
-
fitLine(
VecPoint points, int distType, double param, double reps, double aeps, {OutputArray? line}) → Mat - FitLine fits a line to a 2D or 3D point set. distType: DistanceTypes For further details, please see: https:///docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
-
fitLineAsync(
VecPoint points, int distType, double param, double reps, double aeps, {OutputArray? line}) → Future< Mat> - FitLine fits a line to a 2D or 3D point set. distType: DistanceTypes For further details, please see: https:///docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
-
flip(
InputArray src, int flipCode, {OutputArray? dst}) → Mat - Flip flips a 2D array around horizontal(0), vertical(1), or both axes(-1).
-
flipAsync(
InputArray src, int flipCode, {OutputArray? dst}) → Future< Mat> - Flip flips a 2D array around horizontal(0), vertical(1), or both axes(-1).
-
flipND(
InputArray src, int axis, {OutputArray? dst}) → Mat -
flipNDAsync(
InputArray src, int axis, {OutputArray? dst}) → Future< Mat> -
float16(
int w) → double -
float16Inv(
double x) → int -
floodFill(
InputOutputArray image, Point seedPoint, Scalar newVal, {InputOutputArray? mask, Scalar? loDiff, Scalar? upDiff, int flags = 4}) → (int, Mat, Mat, Rect) - Fills a connected component with the given color.
-
floodFillAsync(
InputOutputArray image, Point seedPoint, Scalar newVal, {InputOutputArray? mask, Scalar? loDiff, Scalar? upDiff, int flags = 4}) → Future< (int, Mat, Mat, Rect)> - Fills a connected component with the given color.
-
gaussianBlur(
Mat src, (int, int) ksize, double sigmaX, {Mat? dst, double sigmaY = 0, int borderType = BORDER_DEFAULT}) → Mat - GaussianBlur blurs an image Mat using a Gaussian filter. The function convolves the src Mat image into the dst Mat using the specified Gaussian kernel params.
-
gaussianBlurAsync(
Mat src, (int, int) ksize, double sigmaX, {Mat? dst, double sigmaY = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - GaussianBlur blurs an image Mat using a Gaussian filter. The function convolves the src Mat image into the dst Mat using the specified Gaussian kernel params.
-
gemm(
InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, {OutputArray? dst, int flags = 0}) → Mat - Gemm performs generalized matrix multiplication.
-
gemmAsync(
InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, {OutputArray? dst, int flags = 0}) → Future< Mat> - Gemm performs generalized matrix multiplication.
-
getAffineTransform(
VecPoint src, VecPoint dst) → Mat - GetAffineTransform returns a 2x3 affine transformation matrix for the corresponding 3 point pairs as image.Point.
-
getAffineTransform2f(
VecPoint2f src, VecPoint2f dst) → Mat -
getAffineTransform2fAsync(
VecPoint2f src, VecPoint2f dst) → Future< Mat> -
getAffineTransformAsync(
VecPoint src, VecPoint dst) → Future< Mat> - GetAffineTransform returns a 2x3 affine transformation matrix for the corresponding 3 point pairs as image.Point.
-
getAvailableBackends(
) → List< (int, int)> - getAvailableBackends
-
getAvailableTargets(
int backend) → List< int> - getAvailableTargets https://docs.opencv.org/4.x/d6/d0f/group__dnn.html#ga711e5056b6642b33d9480c98c6889f56
-
getBlobChannel(
Mat blob, int imgidx, int chnidx) → Mat - GetBlobChannel extracts a single (2d)channel from a 4 dimensional blob structure (this might e.g. contain the results of a SSD or YOLO detection,
-
getBlobChannelAsync(
Mat blob, int imgidx, int chnidx) → Future< Mat> -
getBlobSize(
Mat blob) → VecI32 - GetBlobSize retrieves the 4 dimensional size information in (N,C,H,W) order
-
getBuildInformation(
) → String - Returns full configuration time cmake output.
-
getDefaultNewCameraMatrix(
InputArray cameraMatrix, {Size? imgsize, bool centerPrincipalPoint = false}) → Mat - Returns the default new camera matrix.
-
getDefaultNewCameraMatrixAsync(
InputArray cameraMatrix, {Size? imgsize, bool centerPrincipalPoint = false}) → Future< Mat> - Returns the default new camera matrix.
-
getGaussianKernel(
int ksize, double sigma, {int ktype = 6}) → Mat - GetGaussianKernel returns Gaussian filter coefficients.
-
getGaussianKernelAsync(
int ksize, double sigma, {int ktype = 6}) → Future< Mat> - GetGaussianKernel returns Gaussian filter coefficients.
-
getLogLevel(
) → int - Gets the global logging level.
-
getMouseWheelDelta(
int flags) → int -
getNumThreads(
) → int - Get the number of threads for OpenCV.
-
getOptimalDFTSize(
int vecsize) → int - GetOptimalDFTSize returns the optimal Discrete Fourier Transform (DFT) size for a given vector size.
-
getOptimalDFTSizeAsync(
int vecsize) → Future< int> - GetOptimalDFTSize returns the optimal Discrete Fourier Transform (DFT) size for a given vector size.
-
getOptimalNewCameraMatrix(
InputArray cameraMatrix, InputArray distCoeffs, (int, int) imageSize, double alpha, {(int, int) newImgSize = (0, 0), bool centerPrincipalPoint = false}) → (Mat, Rect) - GetOptimalNewCameraMatrixWithParams computes and returns the optimal new camera matrix based on the free scaling parameter.
-
getOptimalNewCameraMatrixAsync(
InputArray cameraMatrix, InputArray distCoeffs, (int, int) imageSize, double alpha, {(int, int) newImgSize = (0, 0), bool centerPrincipalPoint = false}) → Future< (Mat, Rect)> - GetOptimalNewCameraMatrixWithParams computes and returns the optimal new camera matrix based on the free scaling parameter.
-
getPerspectiveTransform(
VecPoint src, VecPoint dst, [int solveMethod = DECOMP_LU]) → Mat - GetPerspectiveTransform returns 3x3 perspective transformation for the corresponding 4 point pairs as image.Point.
-
getPerspectiveTransform2f(
VecPoint2f src, VecPoint2f dst, [int solveMethod = DECOMP_LU]) → Mat - GetPerspectiveTransform2f returns 3x3 perspective transformation for the corresponding 4 point pairs as gocv.Point2f.
-
getPerspectiveTransform2fAsync(
VecPoint2f src, VecPoint2f dst, [int solveMethod = DECOMP_LU]) → Future< Mat> - GetPerspectiveTransform2f returns 3x3 perspective transformation for the corresponding 4 point pairs as gocv.Point2f.
-
getPerspectiveTransformAsync(
VecPoint src, VecPoint dst, [int solveMethod = DECOMP_LU]) → Future< Mat> - GetPerspectiveTransform returns 3x3 perspective transformation for the corresponding 4 point pairs as image.Point.
-
getRectSubPix(
InputArray image, (int, int) patchSize, Point2f center, {OutputArray? patch, int patchType = -1}) → Mat - GetRectSubPix retrieves a pixel rectangle from an image with sub-pixel accuracy.
-
getRectSubPixAsync(
InputArray image, (int, int) patchSize, Point2f center, {OutputArray? patch, int patchType = -1}) → Future< Mat> - GetRectSubPix retrieves a pixel rectangle from an image with sub-pixel accuracy.
-
getRotationMatrix2D(
Point2f center, double angle, double scale) → Mat - GetRotationMatrix2D calculates an affine matrix of 2D rotation.
-
getRotationMatrix2DAsync(
Point2f center, double angle, double scale) → Future< Mat> - GetRotationMatrix2D calculates an affine matrix of 2D rotation.
-
getStructuringElement(
int shape, (int, int) ksize, {Point? anchor}) → Mat - GetStructuringElement returns a structuring element of the specified size and shape for morphological operations.
-
getStructuringElementAsync(
int shape, (int, int) ksize, {Point? anchor}) → Future< Mat> - GetStructuringElement returns a structuring element of the specified size and shape for morphological operations.
-
getTextSize(
String text, int fontFace, double fontScale, int thickness) → (Size, int) - GetTextSizeWithBaseline calculates the width and height of a text string including the basline of the text. It returns an image.Point with the size required to draw text using a specific font face, scale, and thickness as well as its baseline.
-
getTextSizeAsync(
String text, int fontFace, double fontScale, int thickness) → Future< (Size, int)> - GetTextSizeWithBaseline calculates the width and height of a text string including the basline of the text. It returns an image.Point with the size required to draw text using a specific font face, scale, and thickness as well as its baseline.
-
getTickCount(
) → int - GetTickCount returns the number of ticks.
-
getTickFrequency(
) → double - GetTickFrequency returns the number of ticks per second.
-
getTrackbarPos(
String trackbarName, String winName) → int -
getWindowImageRect(
String winName) → Rect -
getWindowProperty(
String winName, WindowPropertyFlags flag) → double - getWindowProperty returns properties of a window.
-
goodFeaturesToTrack(
InputArray image, int maxCorners, double qualityLevel, double minDistance, {VecPoint2f? corners, InputArray? mask, int blockSize = 3, int? gradientSize, bool useHarrisDetector = false, double k = 0.04}) → VecPoint2f - GoodFeaturesToTrack determines strong corners on an image. The function finds the most prominent corners in the image or in the specified image region.
-
goodFeaturesToTrackAsync(
InputArray image, int maxCorners, double qualityLevel, double minDistance, {VecPoint2f? corners, InputArray? mask, int blockSize = 3, int? gradientSize, bool useHarrisDetector = false, double k = 0.04}) → Future< VecPoint2f> - GoodFeaturesToTrack determines strong corners on an image. The function finds the most prominent corners in the image or in the specified image region.
-
grabCut(
InputArray img, InputOutputArray mask, Rect rect, InputOutputArray bgdModel, InputOutputArray fgdModel, int iterCount, {int mode = GC_EVAL}) → (Mat, Mat, Mat) - Grabcut runs the GrabCut algorithm. The function implements the GrabCut image segmentation algorithm. For further details, please see: https:///docs.opencv.org/master/d3/d47/group__imgproc__segmentation.html#ga909c1dda50efcbeaa3ce126be862b37f
-
grabCutAsync(
InputArray img, InputOutputArray mask, Rect rect, InputOutputArray bgdModel, InputOutputArray fgdModel, int iterCount, {int mode = GC_EVAL}) → Future< (Mat, Mat, Mat)> - Grabcut runs the GrabCut algorithm. The function implements the GrabCut image segmentation algorithm. For further details, please see: https:///docs.opencv.org/master/d3/d47/group__imgproc__segmentation.html#ga909c1dda50efcbeaa3ce126be862b37f
-
groupRectangles(
VecRect rects, int groupThreshold, double eps) → VecRect -
groupRectanglesAsync(
VecRect rects, int groupThreshold, double eps) → Future< VecRect> -
hasNonZero(
InputArray src) → bool - Checks for the presence of at least one non-zero array element.
-
haveImageReader(
String filename) → bool - Returns true if the specified image can be decoded by OpenCV.
-
haveImageWriter(
String filename) → bool - Returns true if an image with the specified filename can be encoded by OpenCV.
-
hconcat(
InputArray src1, InputArray src2, {OutputArray? dst}) → Mat - Hconcat applies horizontal concatenation to given matrices.
-
hconcatAsync(
InputArray src1, InputArray src2, {OutputArray? dst}) → Future< Mat> - Hconcat applies horizontal concatenation to given matrices.
-
HoughCircles(
InputArray image, int method, double dp, double minDist, {OutputArray? circles, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0}) → Mat -
HoughCircles finds circles in a grayscale image using the Hough transform.
The only "method" currently supported is HoughGradient. If you want to pass
more parameters, please see
HoughCirclesWithParams
. -
HoughCirclesAsync(
InputArray image, int method, double dp, double minDist, {OutputArray? circles, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0}) → Future< Mat> -
HoughCircles finds circles in a grayscale image using the Hough transform.
The only "method" currently supported is HoughGradient. If you want to pass
more parameters, please see
HoughCirclesWithParams
. -
HoughLines(
InputArray image, double rho, double theta, int threshold, {OutputArray? lines, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI}) → Mat - HoughLines implements the standard or standard multi-scale Hough transform algorithm for line detection. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
HoughLinesAsync(
InputArray image, double rho, double theta, int threshold, {OutputArray? lines, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI}) → Future< Mat> - HoughLines implements the standard or standard multi-scale Hough transform algorithm for line detection. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
HoughLinesP(
InputArray image, double rho, double theta, int threshold, {OutputArray? lines, double minLineLength = 0, double maxLineGap = 0}) → Mat - HoughLinesP implements the probabilistic Hough transform algorithm for line detection. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
HoughLinesPAsync(
InputArray image, double rho, double theta, int threshold, {OutputArray? lines, double minLineLength = 0, double maxLineGap = 0}) → Future< Mat> - HoughLinesP implements the probabilistic Hough transform algorithm for line detection. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
HoughLinesPointSet(
InputArray point, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step, {OutputArray? lines}) → Mat - HoughLinesPointSet implements the Hough transform algorithm for line detection on a set of points. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
HoughLinesPointSetAsync(
InputArray point, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step, {OutputArray? lines}) → Future< Mat> - HoughLinesPointSet implements the Hough transform algorithm for line detection on a set of points. For a good explanation of Hough transform, see: http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
-
idct(
InputArray src, {OutputArray? dst, int flags = 0}) → Mat - IDCT calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
-
idctAsync(
InputArray src, {OutputArray? dst, int flags = 0}) → Future< Mat> - IDCT calculates the inverse Discrete Cosine Transform of a 1D or 2D array.
-
idft(
InputArray src, {OutputArray? dst, int flags = 0, int nonzeroRows = 0}) → Mat - IDFT calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
-
idftAsync(
InputArray src, {OutputArray? dst, int flags = 0, int nonzeroRows = 0}) → Future< Mat> - IDFT calculates the inverse Discrete Fourier Transform of a 1D or 2D array.
-
illuminationChange(
InputArray src, InputArray mask, {double alpha = 0.2, double beta = 0.4}) → Mat - IlluminationChange modifies locally the apparent illumination of an image. For further details, please see: https://docs.opencv.org/master/df/da0/group__photo__clone.html#gac5025767cf2febd8029d474278e886c7
-
illuminationChangeAsync(
InputArray src, InputArray mask, {double alpha = 0.2, double beta = 0.4}) → Future< Mat> -
imagesFromBlob(
Mat blob) → VecMat - ImagesFromBlob Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure (std::vectorcv::Mat).
-
imagesFromBlobAsync(
Mat blob) → Future< VecMat> -
imcount(
String filename, {int flags = IMREAD_ANYCOLOR}) → int - Returns the number of images inside the give file.
-
imdecode(
Uint8List buf, int flags, {Mat? dst}) → Mat - imdecode reads an image from a buffer in memory. The function imdecode reads an image from the specified buffer in memory. If the buffer is too short or contains invalid data, the function returns an empty matrix. @param buf Input array or vector of bytes. @param flags The same flags as in cv::imread, see cv::ImreadModes.
-
imdecodeAsync(
Uint8List buf, int flags, {Mat? dst}) → Future< Mat> - async version of imdecode
-
imdecodeVec(
VecUChar buf, int flags, {Mat? dst}) → Mat - Same as imdecode but accepts VecUChar
-
imdecodeVecAsync(
VecUChar vec, int flags, {Mat? dst}) → Future< Mat> - Same as imdecodeAsync but accepts VecUChar
-
imencode(
String ext, InputArray img, {VecI32? params}) → (bool, Uint8List) - imencode encodes an image Mat into a memory buffer. This function compresses the image and stores it in the returned memory buffer, using the image format passed in in the form of a file extension string.
-
imencodeAsync(
String ext, InputArray img, {VecI32? params}) → Future< (bool, Uint8List)> - async version of imencode
-
imencodeVec(
String ext, InputArray img, {VecI32? params}) → (bool, VecUChar) - Same as imencode but returns VecUChar
-
imencodeVecAsync(
String ext, InputArray img, {VecI32? params}) → Future< (bool, VecUChar)> - Same as imencodeAsync but returns VecUChar
-
imread(
String filename, {int flags = IMREAD_COLOR}) → Mat - read an image from a file into a Mat. The flags param is one of the IMReadFlag flags. If the image cannot be read (because of missing file, improper permissions, unsupported or invalid format), the function returns an empty Mat.
-
imreadAsync(
String filename, {int flags = IMREAD_COLOR}) → Future< Mat> - async version of imread
-
imshow(
String winName, Mat img) → void - displays an image Mat in the specified window. This function should be followed by the WaitKey function which displays the image for specified milliseconds. Otherwise, it won't display the image.
-
imwrite(
String filename, InputArray img, {VecI32? params}) → bool - write a Mat to an image file.
-
imwriteAsync(
String filename, InputArray img, {VecI32? params}) → Future< bool> - async version of imwrite
-
initUndistortRectifyMap(
InputArray cameraMatrix, InputArray distCoeffs, InputArray R, InputArray newCameraMatrix, (int, int) size, int m1type, {OutputArray? map1, OutputArray? map2}) → (Mat, Mat) - InitUndistortRectifyMap computes the joint undistortion and rectification transformation and represents the result in the form of maps for remap
-
initUndistortRectifyMapAsync(
InputArray cameraMatrix, InputArray distCoeffs, InputArray R, InputArray newCameraMatrix, (int, int) size, int m1type, {OutputArray? map1, OutputArray? map2}) → Future< (Mat, Mat)> - InitUndistortRectifyMap computes the joint undistortion and rectification transformation and represents the result in the form of maps for remap
-
initWideAngleProjMap(
InputArray cameraMatrix, InputArray distCoeffs, Size imageSize, int destImageWidth, int m1type, {OutputArray? map1, OutputArray? map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0}) → (double, Mat, Mat) - initializes maps for remap for wide-angle
-
initWideAngleProjMapAsync(
InputArray cameraMatrix, InputArray distCoeffs, Size imageSize, int destImageWidth, int m1type, {OutputArray? map1, OutputArray? map2, int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0}) → Future< (double, Mat, Mat)> - initializes maps for remap for wide-angle
-
inpaint(
InputArray src, InputArray inpaintMask, double inpaintRadius, int flags) → Mat - Inpaint reconstructs the selected image area from the pixel near the area boundary. The function may be used to remove dust and scratches from a scanned photo, or to remove undesirable objects from still images or video. For further details, please see: https://docs.opencv.org/4.x/d7/d8b/group__photo__inpaint.html#gaedd30dfa0214fec4c88138b51d678085
-
inpaintAsync(
InputArray src, InputArray inpaintMask, double inpaintRadius, int flags) → Future< Mat> -
inRange(
InputArray src, InputArray lowerb, InputArray upperb, {OutputArray? dst}) → Mat - InRange checks if array elements lie between the elements of two Mat arrays.
-
inRangeAsync(
InputArray src, InputArray lowerb, InputArray upperb, {OutputArray? dst}) → Future< Mat> - InRange checks if array elements lie between the elements of two Mat arrays.
-
inRangebyScalar(
InputArray src, Scalar lowerb, Scalar upperb, {OutputArray? dst}) → Mat - InRangeWithScalar checks if array elements lie between the elements of two Scalars
-
inRangebyScalarAsync(
InputArray src, Scalar lowerb, Scalar upperb, {OutputArray? dst}) → Future< Mat> - InRangeWithScalar checks if array elements lie between the elements of two Scalars
-
insertChannel(
InputArray src, InputOutputArray dst, int coi) → Mat - InsertChannel inserts a single channel to dst (coi is 0-based index) (it replaces channel i with another in dst).
-
insertChannelAsync(
InputArray src, InputOutputArray dst, int coi) → Future< Mat> - InsertChannel inserts a single channel to dst (coi is 0-based index) (it replaces channel i with another in dst).
-
integral(
InputArray src, {OutputArray? sum, OutputArray? sqsum, OutputArray? tilted, int sdepth = -1, int sqdepth = -1}) → (Mat, Mat, Mat) - Integral calculates one or more integral images for the source image. For further details, please see: https:///docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
-
integralAsync(
InputArray src, {OutputArray? sum, OutputArray? sqsum, OutputArray? tilted, int sdepth = -1, int sqdepth = -1}) → Future< (Mat, Mat, Mat)> - Integral calculates one or more integral images for the source image. For further details, please see: https:///docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
-
intersectConvexConvex(
VecPoint p1, VecPoint p2, {VecPoint? p12, bool handleNested = true}) → (double, VecPoint) - Finds intersection of two convex polygons.
-
intersectConvexConvexAsync(
VecPoint p1, VecPoint p2, {VecPoint? p12, bool handleNested = true}) → Future< (double, VecPoint)> - Finds intersection of two convex polygons.
-
invert(
InputArray src, {OutputArray? dst, int flags = DECOMP_LU}) → (double, Mat) - Invert finds the inverse or pseudo-inverse of a matrix.
-
invertAffineTransform(
InputArray M, {OutputArray? iM}) → Mat - Inverts an affine transformation. The function computes an inverse affine transformation represented by 2×3 matrix M: The result is also a 2×3 matrix of the same type as M.
-
invertAffineTransformAsync(
InputArray M, {OutputArray? iM}) → Future< Mat> - Inverts an affine transformation. The function computes an inverse affine transformation represented by 2×3 matrix M: The result is also a 2×3 matrix of the same type as M.
-
invertAsync(
InputArray src, {OutputArray? dst, int flags = DECOMP_LU}) → Future< (double, Mat)> - Invert finds the inverse or pseudo-inverse of a matrix.
-
isContourConvex(
VecPoint contour) → bool - Tests a contour convexity.
-
isWindowOpen(
String winName) → bool -
kmeans(
InputArray data, int K, InputOutputArray bestLabels, (int, int, double) criteria, int attempts, int flags, {OutputArray? centers}) → (double, Mat, Mat) - KMeans finds centers of clusters and groups input samples around the clusters.
-
kmeansAsync(
InputArray data, int K, InputOutputArray bestLabels, (int, int, double) criteria, int attempts, int flags, {OutputArray? centers}) → Future< (double, Mat, Mat)> - KMeans finds centers of clusters and groups input samples around the clusters.
-
kmeansByPoints(
VecPoint2f pts, int K, InputOutputArray bestLabels, (int, int, double) criteria, int attempts, int flags, {OutputArray? centers}) → (double, Mat, Mat) - KMeansPoints finds centers of clusters and groups input samples around the clusters.
-
kmeansByPointsAsync(
VecPoint2f pts, int K, InputOutputArray bestLabels, (int, int, double) criteria, int attempts, int flags, {OutputArray? centers}) → Future< (double, Mat, Mat)> - KMeansPoints finds centers of clusters and groups input samples around the clusters.
-
laplacian(
Mat src, int ddepth, {Mat? dst, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Mat - Laplacian calculates the Laplacian of an image.
-
laplacianAsync(
Mat src, int ddepth, {Mat? dst, int ksize = 1, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - Laplacian calculates the Laplacian of an image.
-
line(
InputOutputArray img, Point pt1, Point pt2, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Mat - Line draws a line segment connecting two points.
-
linearPolar(
InputArray src, Point2f center, double maxRadius, int flags, {OutputArray? dst}) → Mat - LinearPolar remaps an image to polar coordinates space.
-
linearPolarAsync(
InputArray src, Point2f center, double maxRadius, int flags, {OutputArray? dst}) → Future< Mat> - LinearPolar remaps an image to polar coordinates space.
-
lineAsync(
InputOutputArray img, Point pt1, Point pt2, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Future< Mat> - Line draws a line segment connecting two points.
-
log(
InputArray src, {OutputArray? dst}) → Mat - Log calculates the natural logarithm of every array element.
-
logAsync(
InputArray src, {OutputArray? dst}) → Future< Mat> - Log calculates the natural logarithm of every array element.
-
logPolar(
InputArray src, Point2f center, double M, int flags, {OutputArray? dst}) → Mat - LogPolar remaps an image to semilog-polar coordinates space.
-
logPolarAsync(
InputArray src, Point2f center, double M, int flags, {OutputArray? dst}) → Future< Mat> - LogPolar remaps an image to semilog-polar coordinates space.
-
LUT(
InputArray src, InputArray lut, {OutputArray? dst}) → Mat - Performs a look-up table transform of an array. Support CV_8U, CV_8S, CV_16U, CV_16S
-
LUTAsync(
InputArray src, InputArray lut, {OutputArray? dst}) → Future< Mat> - Performs a look-up table transform of an array. Support CV_8U, CV_8S, CV_16U, CV_16S
-
magnitude(
InputArray x, InputArray y, {OutputArray? magnitude}) → Mat - Magnitude calculates the magnitude of 2D vectors.
-
magnitudeAsync(
InputArray x, InputArray y, {OutputArray? magnitude}) → Future< Mat> - Magnitude calculates the magnitude of 2D vectors.
-
matchShapes(
VecPoint contour1, VecPoint contour2, int method, double parameter) → double - Compares two shapes. method: ShapeMatchModes For further details, please see: https:///docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#gaadc90cb16e2362c9bd6e7363e6e4c317
-
matchShapesAsync(
VecPoint contour1, VecPoint contour2, int method, double parameter) → Future< double> - Compares two shapes. method: ShapeMatchModes For further details, please see: https:///docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#gaadc90cb16e2362c9bd6e7363e6e4c317
-
matchTemplate(
Mat image, Mat templ, int method, {OutputArray? result, Mat? mask}) → Mat - MatchTemplate compares a template against overlapped image regions.
-
matchTemplateAsync(
Mat image, Mat templ, int method, {OutputArray? result, Mat? mask}) → Future< Mat> - MatchTemplate compares a template against overlapped image regions.
-
matMulDeriv(
InputArray A, InputArray B, {OutputArray? dABdA, OutputArray? dABdB}) → (Mat, Mat) - Computes partial derivatives of the matrix product for each multiplied matrix.
-
matMulDerivAsync(
InputArray A, InputArray B, {OutputArray? dABdA, OutputArray? dABdB}) → Future< (Mat, Mat)> - Computes partial derivatives of the matrix product for each multiplied matrix.
-
max(
InputArray src1, InputArray src2, {OutputArray? dst}) → Mat - Max calculates per-element maximum of two arrays or an array and a scalar.
-
maxAsync(
InputArray src1, InputArray src2, {OutputArray? dst}) → Future< Mat> - Max calculates per-element maximum of two arrays or an array and a scalar.
-
mean(
InputArray src, {InputArray? mask}) → Scalar - mean
-
meanStdDev(
InputArray src, {InputArray? mask}) → (Scalar, Scalar) - MeanStdDev calculates a mean and standard deviation of array elements.
-
meanStdDevAsync(
InputArray src, {InputArray? mask}) → Future< (Scalar, Scalar)> - MeanStdDev calculates a mean and standard deviation of array elements.
-
medianBlur(
Mat src, int ksize, {OutputArray? dst}) → Mat - MedianBlur blurs an image using the median filter.
-
medianBlurAsync(
Mat src, int ksize, {OutputArray? dst}) → Future< Mat> - MedianBlur blurs an image using the median filter.
-
merge(
VecMat mv, {OutputArray? dst}) → Mat - Merge creates one multi-channel array out of several single-channel ones.
-
mergeAsync(
VecMat mv, {OutputArray? dst}) → Future< Mat> - Merge creates one multi-channel array out of several single-channel ones.
-
min(
InputArray src1, InputArray src2, {OutputArray? dst}) → Mat - Min calculates per-element minimum of two arrays or an array and a scalar.
-
minAreaRect(
VecPoint points) → RotatedRect - MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
-
minAreaRectAsync(
VecPoint points) → Future< RotatedRect> - MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
-
minAsync(
InputArray src1, InputArray src2, {OutputArray? dst}) → Future< Mat> - Min calculates per-element minimum of two arrays or an array and a scalar.
-
minEnclosingCircle(
VecPoint points) → (Point2f, double) - MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
-
minEnclosingCircleAsync(
VecPoint points) → Future< (Point2f, double)> - MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
-
minMaxIdx(
InputArray src, {InputArray? mask}) → (double, double, int, int) - MinMaxIdx finds the global minimum and maximum in an array.
-
minMaxIdxAsync(
InputArray src, {InputArray? mask}) → Future< (double, double, int, int)> - MinMaxIdx finds the global minimum and maximum in an array.
-
minMaxLoc(
InputArray src, {InputArray? mask}) → (double, double, Point, Point) - MinMaxLoc finds the global minimum and maximum in an array.
-
minMaxLocAsync(
InputArray src, {InputArray? mask}) → Future< (double, double, Point, Point)> - MinMaxLoc finds the global minimum and maximum in an array.
-
mixChannels(
VecMat src, VecMat dst, VecI32 fromTo) → VecMat - Copies specified channels from input arrays to the specified channels of output arrays.
-
mixChannelsAsync(
VecMat src, VecMat dst, VecI32 fromTo) → Future< VecMat> - Copies specified channels from input arrays to the specified channels of output arrays.
-
moments(
Mat src, {bool binaryImage = false}) → Moments - Moments calculates all of the moments up to the third order of a polygon or rasterized shape.
-
momentsAsync(
Mat src, {bool binaryImage = false}) → Future< Moments> - Moments calculates all of the moments up to the third order of a polygon or rasterized shape.
-
morphologyDefaultBorderValue(
) → Scalar - MorphologyDefaultBorder returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
-
morphologyDefaultBorderValueAsync(
) → Future< Scalar> - MorphologyDefaultBorder returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
-
morphologyEx(
Mat src, int op, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Mat - MorphologyEx performs advanced morphological transformations.
-
morphologyExAsync(
Mat src, int op, Mat kernel, {Mat? dst, Point? anchor, int iterations = 1, int borderType = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - MorphologyEx performs advanced morphological transformations.
-
moveWindow(
String winName, int x, int y) → void - MoveWindow moves window to the specified position.
-
mulSpectrums(
InputArray a, InputArray b, int flags, {OutputArray? c, bool conjB = false}) → Mat - Mulspectrums performs the per-element multiplication of two Fourier spectrums.
-
mulSpectrumsAsync(
InputArray a, InputArray b, int flags, {OutputArray? c, bool conjB = false}) → Future< Mat> - Mulspectrums performs the per-element multiplication of two Fourier spectrums.
-
multiply(
InputArray src1, InputArray src2, {OutputArray? dst, double scale = 1, int dtype = -1}) → Mat - Multiply calculates the per-element scaled product of two arrays. Both input arrays must be of the same size and the same type.
-
multiplyAsync(
InputArray src1, InputArray src2, {OutputArray? dst, double scale = 1, int dtype = -1}) → Future< Mat> - Multiply calculates the per-element scaled product of two arrays. Both input arrays must be of the same size and the same type.
-
mulTransposed(
InputArray src, OutputArray dst, bool aTa, {InputArray? delta, double scale = 1, int dtype = -1}) → Mat - mulTransposed
-
mulTransposedAsync(
InputArray src, OutputArray dst, bool aTa, {InputArray? delta, double scale = 1, int dtype = -1}) → Future< Mat> - mulTransposed
-
namedWindow(
String winName, [int flags = 0]) → void - creates a new named OpenCV window
-
NMSBoxes(
VecRect bboxes, VecF32 scores, double scoreThreshold, double nmsThreshold, {double eta = 1.0, int topK = 0}) → List< int> - NMSBoxes performs non maximum suppression given boxes and corresponding scores.
-
NMSBoxesAsync(
VecRect bboxes, VecF32 scores, double scoreThreshold, double nmsThreshold, {double eta = 1.0, int topK = 0}) → Future< List< int> > -
norm(
InputArray src1, {int normType = NORM_L2, InputArray? mask}) → double - Norm calculates the absolute norm of an array.
-
norm1(
InputArray src1, InputArray src2, {int normType = NORM_L2, InputArray? mask}) → double - Norm calculates the absolute difference/relative norm of two arrays.
-
norm1Async(
InputArray src1, InputArray src2, {int normType = NORM_L2, InputArray? mask}) → Future< double> - Norm calculates the absolute difference/relative norm of two arrays.
-
normalize(
InputArray src, InputOutputArray dst, {double alpha = 1, double beta = 0, int normType = NORM_L2, int dtype = -1, InputArray? mask}) → Mat - Normalize normalizes the norm or value range of an array.
-
normalizeAsync(
InputArray src, InputOutputArray dst, {double alpha = 1, double beta = 0, int normType = NORM_L2, int dtype = -1, InputArray? mask}) → Future< Mat> - Normalize normalizes the norm or value range of an array.
-
normAsync(
InputArray src1, {int normType = NORM_L2, InputArray? mask}) → Future< double> - Norm calculates the absolute norm of an array.
-
OcvFinalizer<
T extends NativeType> (NativeFinalizerFunctionT< T> func) → NativeFinalizer -
openCvVersion(
) → String - get version
-
patchNaNs(
InputArray a, double val) → Mat - patchNaNs
-
PCABackProject(
InputArray data, InputArray mean, InputArray eigenvectors, {OutputArray? dst}) → Mat - https://docs.opencv.org/4.x/d2/de8/group__core__array.html#gab26049f30ee8e94f7d69d82c124faafc
-
PCABackProjectAsync(
InputArray data, InputArray mean, InputArray eigenvectors, {OutputArray? dst}) → Future< Mat> -
PCACompute(
InputArray data, InputOutputArray mean, {OutputArray? eigenvectors, OutputArray? eigenvalues, int maxComponents = 0}) → (Mat, Mat, Mat) - PCACompute performs PCA.
-
PCACompute1(
InputArray data, InputOutputArray mean, double retainedVariance, {OutputArray? eigenvectors, OutputArray? eigenvalues}) → (Mat, Mat, Mat) -
PCACompute1Async(
InputArray data, InputOutputArray mean, double retainedVariance, {OutputArray? eigenvectors, OutputArray? eigenvalues}) → Future< (Mat, Mat, Mat)> -
PCAComputeAsync(
InputArray data, InputOutputArray mean, {OutputArray? eigenvectors, OutputArray? eigenvalues, int maxComponents = 0}) → Future< (Mat, Mat, Mat)> - PCACompute performs PCA.
-
PCAProject(
Mat data, Mat mean, Mat eigenvectors, {OutputArray? result}) → (Mat, Mat) -
PCAProjectAsync(
Mat data, Mat mean, Mat eigenvectors, {OutputArray? result}) → Future< (Mat, Mat)> -
pencilSketch(
InputArray src, {double sigmaS = 60, double sigmaR = 0.07, double shadeFactor = 0.02}) → (Mat, Mat) - PencilSketch pencil-like non-photorealistic line drawing. For further details, please see: https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gae5930dd822c713b36f8529b21ddebd0c
-
pencilSketchAsync(
InputArray src, {double sigmaS = 60, double sigmaR = 0.07, double shadeFactor = 0.02}) → Future< (Mat, Mat)> -
perspectiveTransform(
InputArray src, InputArray m, {OutputArray? dst}) → Mat - PerspectiveTransform performs the perspective matrix transformation of vectors.
-
perspectiveTransformAsync(
InputArray src, InputArray m, {OutputArray? dst}) → Future< Mat> - PerspectiveTransform performs the perspective matrix transformation of vectors.
-
phase(
InputArray x, InputArray y, {OutputArray? angle, bool angleInDegrees = false}) → Mat - Phase calculates the rotation angle of 2D vectors.
-
phaseAsync(
InputArray x, InputArray y, {OutputArray? angle, bool angleInDegrees = false}) → Future< Mat> - Phase calculates the rotation angle of 2D vectors.
-
phaseCorrelate(
InputArray src1, InputArray src2, {InputArray? window}) → (Point2f, double) - Apply phaseCorrelate.
-
phaseCorrelateAsync(
InputArray src1, InputArray src2, {InputArray? window}) → Future< (Point2f, double)> - Apply phaseCorrelate.
-
pointPolygonTest(
VecPoint points, Point2f pt, bool measureDist) → double - PointPolygonTest performs a point-in-contour test.
-
pointPolygonTestAsync(
VecPoint points, Point2f pt, bool measureDist) → Future< double> - PointPolygonTest performs a point-in-contour test.
-
polarToCart(
InputArray magnitude, InputArray angle, {OutputArray? x, OutputArray? y, bool angleInDegrees = false}) → (Mat, Mat) - PolatToCart calculates x and y coordinates of 2D vectors from their magnitude and angle.
-
polarToCartAsync(
InputArray magnitude, InputArray angle, {OutputArray? x, OutputArray? y, bool angleInDegrees = false}) → Future< (Mat, Mat)> - PolatToCart calculates x and y coordinates of 2D vectors from their magnitude and angle.
-
pollKey(
) → int -
polylines(
InputOutputArray img, VecVecPoint pts, bool isClosed, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Mat - Polylines draws several polygonal curves.
-
polylinesAsync(
InputOutputArray img, VecVecPoint pts, bool isClosed, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Future< Mat> - Polylines draws several polygonal curves.
-
pow(
InputArray src, double power, {OutputArray? dst}) → Mat - Pow raises every array element to a power.
-
powAsync(
InputArray src, double power, {OutputArray? dst}) → Future< Mat> - Pow raises every array element to a power.
-
projectPoints(
InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? imagePoints, OutputArray? jacobian, double aspectRatio = 0}) → (Mat, Mat) - Projects 3D points to an image plane.
-
projectPointsAsync(
InputArray objectPoints, InputArray rvec, InputArray tvec, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? imagePoints, OutputArray? jacobian, double aspectRatio = 0}) → Future< (Mat, Mat)> - Projects 3D points to an image plane.
-
PSNR(
InputArray src1, InputArray src2, {double R = 255.0}) → double - Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
-
PSNRAsync(
InputArray src1, InputArray src2, {double R = 255.0}) → Future< double> - Computes the Peak Signal-to-Noise Ratio (PSNR) image quality metric.
-
putText(
InputOutputArray img, String text, Point org, int fontFace, double fontScale, Scalar color, {int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false}) → Mat - PutTextWithParams draws a text string. It renders the specified text string into the img Mat at the location passed in the "org" param, using the desired font face, font scale, color, and line thinkness.
-
putTextAsync(
InputOutputArray img, String text, Point org, int fontFace, double fontScale, Scalar color, {int thickness = 1, int lineType = LINE_8, bool bottomLeftOrigin = false}) → Future< Mat> - PutTextWithParams draws a text string. It renders the specified text string into the img Mat at the location passed in the "org" param, using the desired font face, font scale, color, and line thinkness.
-
pyrDown(
Mat src, {Mat? dst, (int, int) dstsize = (0, 0), int borderType = BORDER_DEFAULT}) → Mat - PyrDown blurs an image and downsamples it.
-
pyrDownAsync(
Mat src, {Mat? dst, (int, int) dstsize = (0, 0), int borderType = BORDER_DEFAULT}) → Future< Mat> - PyrDown blurs an image and downsamples it.
-
pyrUp(
Mat src, {Mat? dst, (int, int) dstsize = (0, 0), int borderType = BORDER_DEFAULT}) → Mat - PyrUp upsamples an image and then blurs it.
-
pyrUpAsync(
Mat src, {Mat? dst, (int, int) dstsize = (0, 0), int borderType = BORDER_DEFAULT}) → Future< Mat> - PyrUp upsamples an image and then blurs it.
-
randn(
InputOutputArray dst, Scalar mean, Scalar stddev) → Mat - RandN Fills the array with normally distributed random numbers.
-
randnAsync(
InputOutputArray dst, Scalar mean, Scalar stddev) → Future< Mat> - RandN Fills the array with normally distributed random numbers.
-
randShuffle(
InputOutputArray dst, {double iterFactor = 1, Rng? rng}) → Mat - RandShuffle Shuffles the array elements randomly.
-
randShuffleAsync(
InputOutputArray dst, {double iterFactor = 1, Rng? rng}) → Future< Mat> - RandShuffle Shuffles the array elements randomly.
-
randu(
InputOutputArray dst, Scalar low, Scalar high) → Mat - RandU Generates a single uniformly-distributed random number or an array of random numbers.
-
randuAsync(
InputOutputArray dst, Scalar low, Scalar high) → Future< Mat> - RandU Generates a single uniformly-distributed random number or an array of random numbers.
-
recoverPose(
InputArray E, InputArray points1, InputArray points2, {OutputArray? R, OutputArray? t, double focal = 1, Point2d? pp, InputOutputArray? mask}) → (int, Mat, Mat) - Recovers the relative camera rotation and the translation from an estimated essential matrix and the corresponding points in two images, using chirality check. Returns the number of inliers that pass the check.
-
recoverPoseAsync(
InputArray E, InputArray points1, InputArray points2, {OutputArray? R, OutputArray? t, double focal = 1, Point2d? pp, InputOutputArray? mask}) → Future< (int, Mat, Mat)> - Recovers the relative camera rotation and the translation from an estimated essential matrix and the corresponding points in two images, using chirality check. Returns the number of inliers that pass the check.
-
recoverPoseCameraMatrix(
InputArray E, InputArray points1, InputArray points2, InputArray cameraMatrix, {OutputArray? R, OutputArray? t, double distanceThresh = 1, InputOutputArray? mask, OutputArray? triangulatedPoints}) → (int, Mat, Mat, Mat) - int cv::recoverPose (InputArray E, InputArray points1, InputArray points2, InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask=noArray(), OutputArray triangulatedPoints=noArray())
-
recoverPoseCameraMatrixAsync(
InputArray E, InputArray points1, InputArray points2, InputArray cameraMatrix, {OutputArray? R, OutputArray? t, double distanceThresh = 1, InputOutputArray? mask, OutputArray? triangulatedPoints}) → Future< (int, Mat, Mat, Mat)> - int cv::recoverPose (InputArray E, InputArray points1, InputArray points2, InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask=noArray(), OutputArray triangulatedPoints=noArray())
-
rectangle(
InputOutputArray img, Rect rect, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Mat - Rectangle draws a simple, thick, or filled up-right rectangle. It renders a rectangle with the desired characteristics to the target Mat image.
-
rectangleAsync(
InputOutputArray img, Rect rect, Scalar color, {int thickness = 1, int lineType = LINE_8, int shift = 0}) → Future< Mat> - Rectangle draws a simple, thick, or filled up-right rectangle. It renders a rectangle with the desired characteristics to the target Mat image.
-
reduce(
InputArray src, int dim, int rtype, {OutputArray? dst, int dtype = -1}) → Mat - Reduce reduces a matrix to a vector.
-
reduceArgMax(
InputArray src, int axis, {OutputArray? dst, bool lastIndex = false}) → Mat - Finds indices of max elements along provided axis.
-
reduceArgMaxAsync(
InputArray src, int axis, {OutputArray? dst, bool lastIndex = false}) → Future< Mat> - Finds indices of max elements along provided axis.
-
reduceArgMin(
InputArray src, int axis, {OutputArray? dst, bool lastIndex = false}) → Mat - Finds indices of min elements along provided axis.
-
reduceArgMinAsync(
InputArray src, int axis, {OutputArray? dst, bool lastIndex = false}) → Future< Mat> - Finds indices of min elements along provided axis.
-
reduceAsync(
InputArray src, int dim, int rtype, {OutputArray? dst, int dtype = -1}) → Future< Mat> - Reduce reduces a matrix to a vector.
-
remap(
InputArray src, InputArray map1, InputArray map2, int interpolation, {OutputArray? dst, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Mat - Remap applies a generic geometrical transformation to an image.
-
remapAsync(
InputArray src, InputArray map1, InputArray map2, int interpolation, {OutputArray? dst, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - Remap applies a generic geometrical transformation to an image.
-
repeat(
InputArray src, int ny, int nx, {OutputArray? dst}) → Mat - Repeat fills the output array with repeated copies of the input array.
-
repeatAsync(
InputArray src, int ny, int nx, {OutputArray? dst}) → Future< Mat> - Repeat fills the output array with repeated copies of the input array.
-
resize(
InputArray src, (int, int) dsize, {OutputArray? dst, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR}) → Mat - Resize resizes an image. It resizes the image src down to or up to the specified size, storing the result in dst. Note that src and dst may be the same image. If you wish to scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise, if you wish to scale to an explicit size, a non-empty sz may be passed with zero for both fx and fy.
-
resizeAsync(
InputArray src, (int, int) dsize, {OutputArray? dst, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR}) → Future< Mat> - Resize resizes an image. It resizes the image src down to or up to the specified size, storing the result in dst. Note that src and dst may be the same image. If you wish to scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise, if you wish to scale to an explicit size, a non-empty sz may be passed with zero for both fx and fy.
-
resizeWindow(
String winName, int width, int height) → void - ResizeWindow resizes window to the specified size.
-
Rodrigues(
InputArray src, {OutputArray? dst, OutputArray? jacobian}) → Mat - Converts a rotation matrix to a rotation vector or vice versa.
-
RodriguesAsync(
InputArray src, {OutputArray? dst, OutputArray? jacobian}) → Future< Mat> - Converts a rotation matrix to a rotation vector or vice versa.
-
rotate(
InputArray src, int rotateCode, {OutputArray? dst}) → Mat - Rotate rotates a 2D array in multiples of 90 degrees
-
rotateAsync(
InputArray src, int rotateCode, {OutputArray? dst}) → Future< Mat> - Rotate rotates a 2D array in multiples of 90 degrees
-
RQDecomp3x3(
InputArray src, {OutputArray? mtxR, OutputArray? mtxQ, OutputArray? Qx, OutputArray? Qy, OutputArray? Qz}) → (Vec3d, Mat, Mat) - Computes an RQ decomposition of 3x3 matrices.
-
RQDecomp3x3Async(
InputArray src, {OutputArray? mtxR, OutputArray? mtxQ, OutputArray? Qx, OutputArray? Qy, OutputArray? Qz}) → Future< (Vec3d, Mat, Mat)> - Computes an RQ decomposition of 3x3 matrices.
-
sampsonDistance(
InputArray pt1, InputArray pt2, InputArray F) → double - Calculates the Sampson Distance between two points.
-
scaleAdd(
InputArray src1, double alpha, InputArray src2, {OutputArray? dst}) → Mat - Calculates the sum of a scaled array and another array.
-
scaleAddAsync(
InputArray src1, double alpha, InputArray src2, {OutputArray? dst}) → Future< Mat> - Calculates the sum of a scaled array and another array.
-
scharr(
Mat src, int ddepth, int dx, int dy, {Mat? dst, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Mat - Scharr calculates the first x- or y- image derivative using Scharr operator.
-
scharrAsync(
Mat src, int ddepth, int dx, int dy, {Mat? dst, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - Scharr calculates the first x- or y- image derivative using Scharr operator.
-
seamlessClone(
InputArray src, InputArray dst, InputArray mask, Point p, int flags) → Mat - SeamlessClone blend two image by Poisson Blending. For further details, please see: https://docs.opencv.org/master/df/da0/group__photo__clone.html#ga2bf426e4c93a6b1f21705513dfeca49d
-
seamlessCloneAsync(
InputArray src, InputArray dst, InputArray mask, Point p, int flags) → Future< Mat> -
selectROI(
String winName, Mat img, {bool showCrosshair = true, bool fromCenter = false, bool printNotice = true}) → Rect - SelectROI selects a Region Of Interest (ROI) on the given image. It creates a window and allows user to select a ROI cvRunArena mouse.
-
selectROIs(
String winName, Mat img, {bool showCrosshair = true, bool fromCenter = false, bool printNotice = true}) → VecRect - SelectROIs selects multiple Regions Of Interest (ROI) on the given image. It creates a window and allows user to select ROIs cvRunArena mouse.
-
sepFilter2D(
InputArray src, int ddepth, InputArray kernelX, InputArray kernelY, {OutputArray? dst, Point? anchor, double delta = 0, int borderType = BORDER_DEFAULT}) → Mat - SepFilter2D applies a separable linear filter to the image.
-
sepFilter2DAsync(
InputArray src, int ddepth, InputArray kernelX, InputArray kernelY, {OutputArray? dst, Point? anchor, double delta = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - SepFilter2D applies a separable linear filter to the image.
-
setIdentity(
InputOutputArray mtx, {Scalar? s}) → Mat - SetIdentity initializes a scaled identity matrix. For further details, please see:
-
setIdentityAsync(
InputOutputArray mtx, {Scalar? s}) → Future< Mat> - SetIdentity initializes a scaled identity matrix. For further details, please see:
-
setLogLevel(
int logLevel) → void - Sets the global logging level.
-
setNumThreads(
int n) → void - Set the number of threads for OpenCV.
-
setTrackbarMax(
String trackbarName, String winName, int maxval) → void -
setTrackbarMin(
String trackbarName, String winName, int minval) → void -
setTrackbarPos(
String trackbarName, String winName, int pos) → void -
setWindowProperty(
String winName, WindowPropertyFlags flag, double value) → void - setWindowProperty changes parameters of a window dynamically.
-
setWindowTitle(
String winName, String title) → void - SetWindowTitle updates window title.
-
sobel(
Mat src, int ddepth, int dx, int dy, {Mat? dst, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Mat - Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
-
sobelAsync(
Mat src, int ddepth, int dx, int dy, {Mat? dst, int ksize = 3, double scale = 1, double delta = 0, int borderType = BORDER_DEFAULT}) → Future< Mat> - Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
-
solve(
InputArray src1, InputArray src2, {OutputArray? dst, int flags = DECOMP_LU}) → (bool, Mat) - Solve solves one or more linear systems or least-squares problems.
-
solveAsync(
InputArray src1, InputArray src2, {OutputArray? dst, int flags = DECOMP_LU}) → Future< (bool, Mat)> - Solve solves one or more linear systems or least-squares problems.
-
solveCubic(
InputArray coeffs, {OutputArray? roots}) → (int, Mat) - SolveCubic finds the real roots of a cubic equation.
-
solveCubicAsync(
InputArray coeffs, {OutputArray? roots}) → Future< (int, Mat)> - SolveCubic finds the real roots of a cubic equation.
-
solveP3P(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, int flags, {VecMat? rvecs, VecMat? tvecs}) → (int, VecMat, VecMat) - Finds an object pose from 3 3D-2D point correspondences.
-
solveP3PAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, int flags, {VecMat? rvecs, VecMat? tvecs}) → Future< (int, VecMat, VecMat)> - Finds an object pose from 3 3D-2D point correspondences.
-
solvePnP(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE}) → (bool, Mat, Mat) - Finds an object pose from 3D-2D point correspondences.
-
solvePnPAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE}) → Future< (bool, Mat, Mat)> - Finds an object pose from 3D-2D point correspondences.
-
solvePnPGeneric(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {VecMat? rvecs, VecMat? tvecs, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE, InputArray? rvec, InputArray? tvec, OutputArray? reprojectionError}) → (int, VecMat, VecMat, Mat) - Finds an object pose from 3D-2D point correspondences.
-
solvePnPGenericAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {VecMat? rvecs, VecMat? tvecs, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE, InputArray? rvec, InputArray? tvec, OutputArray? reprojectionError}) → Future< (int, VecMat, VecMat, Mat)> - Finds an object pose from 3D-2D point correspondences.
-
solvePnPRansac(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, double reprojectionError = 8.0, double confidence = 0.99, OutputArray? inliers, int flags = SOLVEPNP_ITERATIVE}) → (bool, Mat, Mat, Mat) - Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
-
solvePnPRansacAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, double reprojectionError = 8.0, double confidence = 0.99, OutputArray? inliers, int flags = SOLVEPNP_ITERATIVE}) → Future< (bool, Mat, Mat, Mat)> - Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
-
solvePnPRansacUsac(
InputArray objectPoints, InputArray imagePoints, InputOutputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, OutputArray? inliers, UsacParams? params}) → (bool, Mat, Mat, Mat) - Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
-
solvePnPRansacUsacAsync(
InputArray objectPoints, InputArray imagePoints, InputOutputArray cameraMatrix, InputArray distCoeffs, {OutputArray? rvec, OutputArray? tvec, OutputArray? inliers, UsacParams? params}) → Future< (bool, Mat, Mat, Mat)> - Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
-
solvePnPRefineLM(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, InputOutputArray rvec, InputOutputArray tvec, {TermCriteria? criteria}) → void - Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
-
solvePnPRefineLMAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, InputOutputArray rvec, InputOutputArray tvec, {TermCriteria? criteria}) → Future< void> - Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
-
solvePnPRefineVVS(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, InputOutputArray rvec, InputOutputArray tvec, {TermCriteria? criteria, double VVSlambda = 1.0}) → void - Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
-
solvePnPRefineVVSAsync(
InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, InputOutputArray rvec, InputOutputArray tvec, {TermCriteria? criteria, double VVSlambda = 1.0}) → Future< void> - Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
-
solvePoly(
InputArray coeffs, {OutputArray? roots, int maxIters = 300}) → (double, Mat) - SolvePoly finds the real or complex roots of a polynomial equation.
-
solvePolyAsync(
InputArray coeffs, {OutputArray? roots, int maxIters = 300}) → Future< (double, Mat)> - SolvePoly finds the real or complex roots of a polynomial equation.
-
sort(
InputArray src, int flags, {OutputArray? dst}) → Mat - Sort sorts each row or each column of a matrix.
-
sortAsync(
InputArray src, int flags, {OutputArray? dst}) → Future< Mat> - Sort sorts each row or each column of a matrix.
-
sortIdx(
InputArray src, int flags, {OutputArray? dst}) → Mat - SortIdx sorts each row or each column of a matrix. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array
-
sortIdxAsync(
InputArray src, int flags, {OutputArray? dst}) → Future< Mat> - SortIdx sorts each row or each column of a matrix. Instead of reordering the elements themselves, it stores the indices of sorted elements in the output array
-
spatialGradient(
Mat src, {Mat? dx, Mat? dy, int ksize = 3, int borderType = BORDER_DEFAULT}) → (Mat, Mat) - SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
-
spatialGradientAsync(
Mat src, {Mat? dx, Mat? dy, int ksize = 3, int borderType = BORDER_DEFAULT}) → Future< (Mat, Mat)> - SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
-
split(
InputArray m) → VecMat - Split creates an array of single channel images from a multi-channel image Created images should be closed manualy to avoid memory leaks.
-
splitAsync(
InputArray m) → Future< VecMat> - Split creates an array of single channel images from a multi-channel image Created images should be closed manualy to avoid memory leaks.
-
sqrBoxFilter(
Mat src, int depth, (int, int) ksize, {Point? anchor, bool normalize = true, int borderType = BORDER_DEFAULT, Mat? dst}) → Mat - SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
-
sqrBoxFilterAsync(
Mat src, int depth, (int, int) ksize, {Point? anchor, bool normalize = true, int borderType = BORDER_DEFAULT, Mat? dst}) → Future< Mat> - SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
-
sqrt(
Mat src, {Mat? dst}) → Mat - Calculates a square root of array elements.
-
sqrtAsync(
Mat src, {Mat? dst}) → Future< Mat> - Calculates a square root of array elements.
-
stylization(
InputArray src, {double sigmaS = 60, double sigmaR = 0.45}) → Mat - Stylization aims to produce digital imagery with a wide variety of effects not focused on photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low contrast while preserving, or enhancing, high-contrast features. For further details, please see: https://docs.opencv.org/4.x/df/dac/group__photo__render.html#gacb0f7324017df153d7b5d095aed53206
-
stylizationAsync(
InputArray src, {double sigmaS = 60, double sigmaR = 0.45}) → Future< Mat> -
subtract(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask, int dtype = -1}) → Mat - Subtract calculates the per-element subtraction of two arrays or an array and a scalar.
-
subtractAsync(
InputArray src1, InputArray src2, {OutputArray? dst, InputArray? mask, int dtype = -1}) → Future< Mat> - Subtract calculates the per-element subtraction of two arrays or an array and a scalar.
-
sum(
Mat src) → Scalar - Calculates the sum of array elements.
-
sumAsync(
Mat src) → Future< Scalar> - Calculates the sum of array elements.
-
SVBackSubst(
InputArray w, InputArray u, InputArray vh, InputArray rhs, {OutputArray? dst}) → Mat - SVBackSubst
-
SVDecomp(
InputArray src, {OutputArray? w, OutputArray? u, OutputArray? vt, int flags = 0}) → (Mat, Mat, Mat) - SVDecomp
-
textureFlattening(
InputArray src, InputArray mask, {double lowThreshold = 30, double highThreshold = 45, int kernelSize = 3}) → Mat - TextureFlattening washes out the texture of the selected region, giving its contents a flat aspect. For further details, please see: https://docs.opencv.org/master/df/da0/group__photo__clone.html#gad55df6aa53797365fa7cc23959a54004
-
textureFlatteningAsync(
InputArray src, InputArray mask, {double lowThreshold = 30, double highThreshold = 45, int kernelSize = 3}) → Future< Mat> -
theRNG(
) → Rng - TheRNG Returns the default random number generator.
-
threshold(
InputArray src, double thresh, double maxval, int type, {OutputArray? dst}) → (double, Mat) - Threshold applies a fixed-level threshold to each array element.
-
thresholdAsync(
InputArray src, double thresh, double maxval, int type, {OutputArray? dst}) → Future< (double, Mat)> - Threshold applies a fixed-level threshold to each array element.
-
throwIfFailed(
Pointer< CvStatus> s) → void -
trace(
InputArray mtx) → Scalar - Trace returns the trace of a matrix.
-
traceAsync(
InputArray mtx) → Future< Scalar> - Trace returns the trace of a matrix.
-
transform(
InputArray src, InputArray m, {OutputArray? dst}) → Mat - Transform performs the matrix transformation of every array element.
-
transformAsync(
InputArray src, InputArray m, {OutputArray? dst}) → Future< Mat> - Transform performs the matrix transformation of every array element.
-
transpose(
InputArray src, {OutputArray? dst}) → Mat - Transpose transposes a matrix.
-
transposeAsync(
InputArray src, {OutputArray? dst}) → Future< Mat> - Transpose transposes a matrix.
-
transposeND(
InputArray src, List< int> order, {OutputArray? dst}) → Mat - Transpose for n-dimensional matrices.
-
transposeNDAsync(
InputArray src, List< int> order, {OutputArray? dst}) → Future<Mat> - Transpose for n-dimensional matrices.
-
triangulatePoints(
InputArray projMatr1, InputArray projMatr2, InputArray projPoints1, InputArray projPoints2, {OutputArray? points4D}) → Mat - This function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera.
-
triangulatePointsAsync(
InputArray projMatr1, InputArray projMatr2, InputArray projPoints1, InputArray projPoints2, {OutputArray? points4D}) → Future< Mat> - This function reconstructs 3-dimensional points (in homogeneous coordinates) by using their observations with a stereo camera.
-
undistort(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, InputArray? newCameraMatrix}) → Mat - Transforms an image to compensate for lens distortion. The function transforms an image to compensate radial and tangential lens distortion. The function is simply a combination of initUndistortRectifyMap (with unity R ) and remap (with bilinear interpolation). See the former function for details of the transformation being performed. Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with zeros (black color). A particular subset of the source image that will be visible in the corrected image can be regulated by newCameraMatrix. You can use getOptimalNewCameraMatrix to compute the appropriate newCameraMatrix depending on your requirements. The camera matrix and the distortion parameters can be determined using calibrateCamera. If the resolution of images is different from the resolution used at the calibration stage, fx,fy,cx and cy need to be scaled accordingly, while the distortion coefficients remain the same.
-
undistortAsync(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, InputArray? newCameraMatrix}) → Future< Mat> - Transforms an image to compensate for lens distortion. The function transforms an image to compensate radial and tangential lens distortion. The function is simply a combination of initUndistortRectifyMap (with unity R ) and remap (with bilinear interpolation). See the former function for details of the transformation being performed. Those pixels in the destination image, for which there is no correspondent pixels in the source image, are filled with zeros (black color). A particular subset of the source image that will be visible in the corrected image can be regulated by newCameraMatrix. You can use getOptimalNewCameraMatrix to compute the appropriate newCameraMatrix depending on your requirements. The camera matrix and the distortion parameters can be determined using calibrateCamera. If the resolution of images is different from the resolution used at the calibration stage, fx,fy,cx and cy need to be scaled accordingly, while the distortion coefficients remain the same.
-
undistortImagePoints(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, TermCriteria? criteria}) → Mat - Compute undistorted image points position.
-
undistortImagePointsAsync(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, TermCriteria? criteria}) → Future< Mat> - Compute undistorted image points position.
-
undistortPoints(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, InputArray? R, InputArray? P, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)}) → Mat - UndistortPoints transforms points to compensate for lens distortion
-
undistortPointsAsync(
InputArray src, InputArray cameraMatrix, InputArray distCoeffs, {OutputArray? dst, InputArray? R, InputArray? P, (int, int, double) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4)}) → Future< Mat> - UndistortPoints transforms points to compensate for lens distortion
-
vconcat(
InputArray src1, InputArray src2, {OutputArray? dst}) → Mat - Vconcat applies vertical concatenation to given matrices.
-
vconcatAsync(
InputArray src1, InputArray src2, {OutputArray? dst}) → Future< Mat> - Vconcat applies vertical concatenation to given matrices.
-
waitKey(
int delay) → int - waits for a pressed key. This function is the only method in OpenCV's HighGUI that can fetch and handle events, so it needs to be called periodically for normal event processing
-
waitKeyEx(
int delay) → int -
warpAffine(
InputArray src, InputArray M, (int, int) dsize, {OutputArray? dst, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Mat - WarpAffine applies an affine transformation to an image.
-
warpAffineAsync(
InputArray src, InputArray M, (int, int) dsize, {OutputArray? dst, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - WarpAffine applies an affine transformation to an image.
-
warpPerspective(
InputArray src, InputArray M, (int, int) dsize, {OutputArray? dst, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Mat - WarpPerspective applies a perspective transformation to an image. For more parameters please check WarpPerspectiveWithParams.
-
warpPerspectiveAsync(
InputArray src, InputArray M, (int, int) dsize, {OutputArray? dst, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar? borderValue}) → Future< Mat> - WarpPerspective applies a perspective transformation to an image. For more parameters please check WarpPerspectiveWithParams.
-
watershed(
InputArray image, InputOutputArray markers) → Mat - Watershed performs a marker-based image segmentation using the watershed algorithm.
-
watershedAsync(
InputArray image, InputOutputArray markers) → Future< Mat> - Watershed performs a marker-based image segmentation using the watershed algorithm.
Typedefs
- Contour = VecPoint
- Contour2f = VecPoint2f
- Contour3f = VecPoint3f
- Contours = VecVecPoint
- Contours2f = VecVecPoint2f
- Contours3f = VecVecPoint3f
- F32 = Float
- F64 = Double
- I16 = Int16
- I32 = Int32
- I8 = Int8
- InputArray = OutputArray
- InputOutputArray = Mat
-
NativeFinalizerFunctionT<
T extends NativeType> = Pointer< NativeFunction< Void Function(T token)> > - OutputArray = Mat
- U16 = Uint16
- U8 = Uint8
- VecI8 = VecChar
- VecU8 = VecUChar
-
VoidPtr
= Pointer<
Void>