dartantic_ai 0.2.0
dartantic_ai: ^0.2.0 copied to clipboard
A Dart library for easily interacting with LLMs in a typed manner.
dartantic_ai #
The dartantic_ai package for Dart is inspired by the pydantic-ai package for Python to provide easy, typed access to LLM outputs and tool/function calls across multiple LLMs.
Alpha #
Only supporting Gemini and OpenAI models via API keys in this limited release.
Features #
The following are the target features for this package:
- ✅ Multi-Model Support
- ✅ Create agents from model strings (e.g.
openai:gpt-4o
) or typed providers (e.g.GoogleProvider()
) - ✅ Automatically check environment for API key if none is provided (not web compatible)
- ✅ String output via
Agent.run
- ✅ Typed output via
Agent.runFor
- ✅ Define tools and their inputs/outputs easily
- ✅ Automatically generate LLM-specific tool/output schemas
- ❌ Bring your own provider
- ❌ Execute tools with validated inputs
- ❌ Chains and Sequential Execution
- ❌ JSON Mode, Functions Mode, Flexible Decoding
- ❌ Simple Assistant/Agent loop utilities
- ❌ Per call usage statistics
Usage #
The following are some examples that work in the current build.
Basic Agent Usage #
The following shows simple agent usage.
void main() async {
// Create an agent with a system prompt
final agent = Agent(
model: 'openai:gpt-4o'
systemPrompt: 'Be concise, reply with one sentence.',
);
// Run the agent with a prompt
final result = await agent.run('Where does "hello world" come from?');
print(result.output); // Output: one sentence on the origin on "hello world"
}
JSON Output with JSON Schema #
The following example provides JSON output using a hand-written schemaMap
property, which configures the underlying LLM to response in JSON.
void main() async {
// Define a JSON schema for structured output
final townCountrySchema = {
'type': 'object',
'properties': {
'town': {'type': 'string'},
'country': {'type': 'string'},
},
'required': ['town', 'country'],
'additionalProperties': false,
};
// Create an agent with the schema
final agent = Agent(
model: 'openai:gpt-4o'
outputType: townCountrySchema,
);
// Get structured output as a JSON object
final result = await agent.run('The windy city in the US of A.');
print(result.output); // Output: {"town":"Chicago","country":"United States"}
}
Manual Typed Output with Object Mapping #
The following example provides typed output using automatic json decoding from a
hand-written fromJson
method and a hand-written schemaMap
property.
// Create a data class in your code
class TownAndCountry {
final String town;
final String country;
TownAndCountry({required this.town, required this.country});
factory TownAndCountry.fromJson(Map<String, dynamic> json) => TownAndCountry(
town: json['town'],
country: json['country'],
);
static Map<String, dynamic> get schemaMap => {
'type': 'object',
'properties': {
'town': {'type': 'string'},
'country': {'type': 'string'},
},
'required': ['town', 'country'],
'additionalProperties': false,
};
@override
String toString() => 'TownAndCountry(town: $town, country: $country)';
}
void main() async {
// Use runFor with a type parameter for automatic conversion
final agent = Agent(
model: 'openai:gpt-4o'
outputType: TownAndCountry.schemaMap,
outputFromJson: TownAndCountry.fromJson,
);
final result = await agent.runFor<TownAndCountry>(
'The windy city in the US of A.',
);
print(result.output); // Output: TownAndCountry(town: Chicago, country: United States)
}
Automatic Typed Output with Object Mapping #
The following example provides typed output using json_serializable for automatic json decoding and soti_schema for automatic Json Schema definition.
// Create a data class in your code
@SotiSchema()
@JsonSerializable()
class TownAndCountry {
TownAndCountry({required this.town, required this.country});
factory TownAndCountry.fromJson(Map<String, dynamic> json) =>
_$TownAndCountryFromJson(json);
final String town;
final String country;
Map<String, dynamic> toJson() => _$TownAndCountryToJson(this);
@jsonSchema
static Map<String, dynamic> get schemaMap => _$TownAndCountrySchemaMap;
@override
String toString() => 'TownAndCountry(town: $town, country: $country)';
}
void main() {
// Use runFor with a type parameter for automatic conversion
final agent = Agent(
model: 'openai:gpt-4o'
outputType: TownAndCountry.schemaMap,
outputFromJson: TownAndCountry.fromJson,
);
final result = await agent.runFor<TownAndCountry>(
'The windy city in the US of A.',
);
print(result.output); // Output: TownAndCountry(town: Chicago, country: United States)
}
Typed Tool Calling #
Imagine you'd like to provided your AI Agent with some tools to call. You'd like those to be typed without manually creating a JSON Schema object to define the parameters. You can define the parameters to your tool with a Dart class:
@SotiSchema()
@JsonSerializable()
class TimeFunctionInput {
TimeFunctionInput({required this.timeZoneName});
/// The name of the time zone to get the time in (e.g. "America/New_York")
final String timeZoneName;
static TimeFunctionInput fromJson(Map<String, dynamic> json) =>
_$TimeFunctionInputFromJson(json);
@jsonSchema
static Map<String, dynamic> get schemaMap => _$TimeFunctionInputSchemaMap;
}
The use of the JSON serializer and Soti Schema annotations causes the creation of a schemaMap property that provides a JSON schema at runtime that defines our tool:
Future<void> toolExample() async {
final agent = Agent(
model: 'openai:gpt-4o',
systemPrompt: 'Show the time as local time.',
tools: [
Tool(
name: 'time',
description: 'Get the current time in a given time zone',
inputType: TimeFunctionInput.schemaMap,
onCall: onTimeCall,
),
],
);
final result = await agent.run(
'What is time is it in New York City?',
);
print(result.output);
}
This code defines a tool that gets the current time for a particular time zone. The tool's input arguments are defined via the generated JSON schema.
The tool doesn't need to define a schema for the output of the tool -- the LLM will take whatever data you give it -- but we still need to be able to convert the output type to JSON:
@JsonSerializable()
class TimeFunctionOutput {
TimeFunctionOutput({required this.time});
/// The time in the given time zone
final DateTime time;
Map<String, dynamic> toJson() => _$TimeFunctionOutputToJson(this);
}
We can now use the JSON serialization support in these two types to implement the tool call function:
Future<Map<String, Object?>?> onTimeCall(Map<String, Object?> input) async {
// parse the JSON input into a type-safe object
final timeInput = TimeFunctionInput.fromJson(input);
tz_data.initializeTimeZones();
final location = tz.getLocation(timeInput.timeZoneName);
final now = tz.TZDateTime.now(location);
// construct a type-safe object, then translate to JSON to return
return TimeFunctionOutput(time: now).toJson();
}
In this way, we use the tool input type to define the format of the JSON we're
expecting from the LLM and to decode the input JSON into a typed object for our
implementation of the onTimeCall
function. Likewise, we use the tool output
type to gather the returned data before encoding that back into JSON for the
return to the LLM.