dartantic_ai
The dartantic_ai package for Dart is inspired by the pydantic-ai package for Python to provide easy, typed access to LLM outputs and tool/function calls across multiple LLMs.
Alpha
Only supporting Gemini and OpenAI models via API keys in this limited release.
Features
The following are the target features for this package:
x
Multi-Model Supportx
Create agents from model strings (e.g.openai:gpt-4o
) or typed providers (e.g.GoogleProvider()
)x
Automatically check environment for API key if none is provided (not web compatible)x
String output viaAgent.run
x
Typed output viaAgent.runFor
x
Define tools and their inputs/outputs easilyx
Automatically generate LLM-specific tool/output schemasx
Bring your own provider
Usage
The following are some examples that work in the current build.
Basic Agent Usage
The following shows simple agent usage using the Agent()
constructor, which
takes a model string.
void main() async {
// Create an agent with a system prompt
final agent = Agent(
'openai', // Can also use 'openai:gpt-4o' or 'openai/gpt-4o'
systemPrompt: 'Be concise, reply with one sentence.',
);
// Run the agent with a prompt
final result = await agent.run('Where does "hello world" come from?');
print(result.output); // Output: one sentence on the origin on "hello world"
}
Alternatively, you can use the Agent()
constructor which takes a provider
directly:
void main() async {
// Create an agent with a provider
final agent = Agent.provider(
OpenAiProvider(),
systemPrompt: 'Be concise, reply with one sentence.',
);
// Run the agent with a prompt
final result = await agent.run('Where does "hello world" come from?');
print(result.output); // Output: one sentence on the origin on "hello world"
}
Using DotPrompt
You can also use the Agent.runPrompt()
method with a DotPrompt
object for
more structured prompts:
void main() async {
final prompt = DotPrompt('''
---
model: openai
input:
default:
length: 3
text: "The quick brown fox jumps over the lazy dog."
---
Summarize this in {{length}} words: {{text}}
''');
final result = await Agent.runPrompt(prompt);
print(result.output); // Output: Fox jumps dog.
}
JSON Output with JSON Schema
The following example provides JSON output using a hand-written schemaMap
property, which configures the underlying LLM to response in JSON.
void main() async {
// Define a JSON schema for structured output
final townCountrySchema = {
'type': 'object',
'properties': {
'town': {'type': 'string'},
'country': {'type': 'string'},
},
'required': ['town', 'country'],
'additionalProperties': false,
};
// Create an agent with the schema
final agent = Agent(
'openai',
outputType: townCountrySchema.toSchema(),
);
// Get structured output as a JSON object
final result = await agent.run('The windy city in the US of A.');
print(result.output); // Output: {"town":"Chicago","country":"United States"}
}
Manual Typed Output with Object Mapping
The following example provides typed output using automatic json decoding from a
hand-written fromJson
method and a hand-written schemaMap
property.
// Create a data class in your code
class TownAndCountry {
final String town;
final String country;
TownAndcountry({required this.town, required this.country});
factory TownAndcountry.fromJson(Map<String, dynamic> json) => TownAndcountry(
town: json['town'],
country: json['country'],
);
static Map<String, dynamic> get schemaMap => {
'type': 'object',
'properties': {
'town': {'type': 'string'},
'country': {'type': 'string'},
},
'required': ['town', 'country'],
'additionalProperties': false,
};
@override
String toString() => 'TownAndcountry(town: $town, country: $country)';
}
void main() async {
// Use runFor with a type parameter for automatic conversion
final agent = Agent(
'openai',
outputType: TownAndcountry.schemaMap.toSchema(),
outputFromJson: TownAndcountry.fromJson,
);
final result = await agent.runFor<TownAndcountry>(
'The windy city in the US of A.',
);
print(result.output); // Output: TownAndcountry(town: Chicago, country: United States)
}
Automatic Typed Output with Object Mapping
The following example provides typed output using json_serializable for automatic json decoding and soti_schema for automatic Json Schema definition.
// Create a data class in your code
@SotiSchema()
@JsonSerializable()
class TownAndcountry {
TownAndcountry({required this.town, required this.country});
factory TownAndcountry.fromJson(Map<String, dynamic> json) =>
_$TownAndcountryFromJson(json);
final String town;
final String country;
Map<String, dynamic> toJson() => _$TownAndcountryToJson(this);
@jsonSchema
static Map<String, dynamic> get schemaMap => _$TownAndcountrySchemaMap;
@override
String toString() => 'TownAndcountry(town: $town, country: $country)';
}
void main() async {
// Use runFor with a type parameter for automatic conversion
final agent = Agent(
'openai',
outputType: TownAndcountry.schemaMap.toSchema(),
outputFromJson: TownAndcountry.fromJson,
);
final result = await agent.runFor<TownAndcountry>(
'The windy city in the US of A.',
);
print(result.output); // Output: TownAndcountry(town: Chicago, country: United States)
}
Typed Tool Calling
Imagine you'd like to provided your AI Agent with some tools to call. You'd like those to be typed without manually creating a JSON Schema object to define the parameters. You can define the parameters to your tool with a Dart class:
@SotiSchema()
@JsonSerializable()
class TimeFunctionInput {
TimeFunctionInput({required this.timeZoneName});
/// The name of the time zone to get the time in (e.g. "America/New_York")
final String timeZoneName;
static TimeFunctionInput fromJson(Map<String, dynamic> json) =>
_$TimeFunctionInputFromJson(json);
@jsonSchema
static Map<String, dynamic> get schemaMap => _$TimeFunctionInputSchemaMap;
}
The use of the JSON serializer and Soti Schema annotations causes the creation of a schemaMap property that provides a JSON schema at runtime that defines our tool:
Future<void> toolExample() async {
final agent = Agent(
'openai',
systemPrompt: 'Show the time as local time.',
tools: [
Tool(
name: 'time',
description: 'Get the current time in a given time zone',
inputType: TimeFunctionInput.schemaMap.toSchema(),
onCall: onTimeCall,
),
],
);
final result = await agent.run(
'What is time is it in New York City?',
);
print(result.output);
}
This code defines a tool that gets the current time for a particular time zone. The tool's input arguments are defined via the generated JSON schema.
The tool doesn't need to define a schema for the output of the tool -- the LLM will take whatever data you give it -- but we still need to be able to convert the output type to JSON:
@JsonSerializable()
class TimeFunctionOutput {
TimeFunctionOutput({required this.time});
/// The time in the given time zone
final DateTime time;
Map<String, dynamic> toJson() => _$TimeFunctionOutputToJson(this);
}
We can now use the JSON serialization support in these two types to implement the tool call function:
Future<Map<String, dynamic>?> onTimeCall(Map<String, dynamic> input) async {
// parse the JSON input into a type-safe object
final timeInput = TimeFunctionInput.fromJson(input);
tz_data.initializeTimeZones();
final location = tz.getLocation(timeInput.timeZoneName);
final now = tz.TZDateTime.now(location);
// construct a type-safe object, then translate to JSON to return
return TimeFunctionOutput(time: now).toJson();
}
In this way, we use the tool input type to define the format of the JSON we're
expecting from the LLM and to decode the input JSON into a typed object for our
implementation of the onTimeCall
function. Likewise, we use the tool output
type to gather the returned data before encoding that back into JSON for the
return to the LLM.
Since the LLM is a little more lax about the data you return to it, you may decide to define a Dart type for your input parameters and just bundle up the return data manually, like so:
Future<Map<String, dynamic>?> onTimeCall(Map<String, dynamic> input) async {
// parse the JSON input into a type-safe object
final timeInput = TimeFunctionInput.fromJson(input);
tz_data.initializeTimeZones();
final location = tz.getLocation(timeInput.timeZoneName);
final now = tz.TZDateTime.now(location);
// return a JSON map directly as output
return {'time': now};
}
Not only is this simpler code, but it frees you from maintaining a separate type for output.