tflite_flutter 0.9.2 copy "tflite_flutter: ^0.9.2" to clipboard
tflite_flutter: ^0.9.2 copied to clipboard

TensorFlow Lite Flutter plugin provides an easy, flexible, and fast Dart API to integrate TFLite models in flutter apps across mobile and desktop platforms.



Platform Pub Package Docs

Announcement #

Update: 25 April, 2023

The TensorFlow team has gotten access to the pub.dev page for this plugin and is evaluating how we're going to move forward. PRs are welcome as we move forward with this process.

Feel free to reach out to me with questions until then.

Thanks!

Overview #

TensorFlow Lite Flutter plugin provides a flexible and fast solution for accessing TensorFlow Lite interpreter and performing inference. The API is similar to the TFLite Java and Swift APIs. It directly binds to TFLite C API making it efficient (low-latency). Offers acceleration support using NNAPI, GPU delegates on Android, Metal and CoreML delegates on iOS, and XNNPack delegate on Desktop platforms.

Key Features #

  • Multi-platform Support for Android, iOS, Windows, Mac, Linux.
  • Flexibility to use any TFLite Model.
  • Acceleration using multi-threading and delegate support.
  • Similar structure as TensorFlow Lite Java API.
  • Inference speeds close to native Android Apps built using the Java API.
  • You can choose to use any TensorFlow version by building binaries locally.
  • Run inference in different isolates to prevent jank in UI thread.

(Important) Initial setup : Add dynamic libraries to your app #

Android #

  1. Place the script install.sh (Linux/Mac) or install.bat (Windows) at the root of your project.

  2. Execute sh install.sh (Linux) / install.bat (Windows) at the root of your project to automatically download and place binaries at appropriate folders.

    Note: The binaries installed will not include support for GpuDelegateV2 and NnApiDelegate however InterpreterOptions().useNnApiForAndroid can still be used.

  3. Use sh install.sh -d (Linux) or install.bat -d (Windows) instead if you wish to use these GpuDelegateV2 and NnApiDelegate.

These scripts install pre-built binaries based on latest stable tensorflow release. For info about using other tensorflow versions follow instructions in wiki.

iOS #

  1. Download TensorFlowLiteC.framework. For building a custom version of tensorflow, follow instructions in wiki.
  2. Place the TensorFlowLiteC.framework in the pub-cache folder of this package.

Pub-Cache folder location: (ref)

  • ~/.pub-cache/hosted/pub.dartlang.org/tflite_flutter-<plugin-version>/ios/ (Linux/ Mac)
  • %LOCALAPPDATA%\Pub\Cache\hosted\pub.dartlang.org\tflite_flutter-<plugin-version>\ios\ (Windows)

Desktop #

Follow instructions in this guide to build and use desktop binaries.

TFLite Flutter Helper Library #

A dedicated library with simple architecture for processing and manipulating input and output of TFLite Models. API design and documentation is identical to the TensorFlow Lite Android Support Library. Strongly recommended to be used with tflite_flutter_plugin. Learn more.

Examples #

Title Code Demo Blog
Text Classification App Code Blog/Tutorial
Image Classification App Code -
Object Detection App Code Blog/Tutorial
Reinforcement Learning App Code Blog/Tutorial

Import #

import 'package:tflite_flutter/tflite_flutter.dart';

Usage instructions #

Creating the Interpreter #

  • From asset

    Place your_model.tflite in assets directory. Make sure to include assets in pubspec.yaml.

    final interpreter = await tfl.Interpreter.fromAsset('your_model.tflite');
    

Refer to the documentation for info on creating interpreter from buffer or file.

Performing inference #

See TFLite Flutter Helper Library for easy processing of input and output.

  • For single input and output

    Use void run(Object input, Object output).

    // For ex: if input tensor shape [1,5] and type is float32
    var input = [[1.23, 6.54, 7.81. 3.21, 2.22]];
    
    // if output tensor shape [1,2] and type is float32
    var output = List.filled(1*2, 0).reshape([1,2]);
    
    // inference
    interpreter.run(input, output);
    
    // print the output
    print(output);
    
  • For multiple inputs and outputs

    Use void runForMultipleInputs(List<Object> inputs, Map<int, Object> outputs).

    var input0 = [1.23];  
    var input1 = [2.43];  
    
    // input: List<Object>
    var inputs = [input0, input1, input0, input1];  
    
    var output0 = List<double>.filled(1, 0);  
    var output1 = List<double>.filled(1, 0);
    
    // output: Map<int, Object>
    var outputs = {0: output0, 1: output1};
    
    // inference  
    interpreter.runForMultipleInputs(inputs, outputs);
    
    // print outputs
    print(outputs)
    

Closing the interpreter #

interpreter.close();

Improve performance using delegate support #

Note: This feature is under testing and could be unstable with some builds and on some devices.
  • NNAPI delegate for Android

    var interpreterOptions = InterpreterOptions()..useNnApiForAndroid = true;
    final interpreter = await Interpreter.fromAsset('your_model.tflite',
        options: interpreterOptions);
    
    

    or

    var interpreterOptions = InterpreterOptions()..addDelegate(NnApiDelegate());
    final interpreter = await Interpreter.fromAsset('your_model.tflite',
        options: interpreterOptions);
    
    
  • GPU delegate for Android and iOS

    • Android GpuDelegateV2

      final gpuDelegateV2 = GpuDelegateV2(
              options: GpuDelegateOptionsV2(
              false,
              TfLiteGpuInferenceUsage.fastSingleAnswer,
              TfLiteGpuInferencePriority.minLatency,
              TfLiteGpuInferencePriority.auto,
              TfLiteGpuInferencePriority.auto,
          ));
      
      var interpreterOptions = InterpreterOptions()..addDelegate(gpuDelegateV2);
      final interpreter = await Interpreter.fromAsset('your_model.tflite',
          options: interpreterOptions);
      
    • iOS Metal Delegate (GpuDelegate)

      final gpuDelegate = GpuDelegate(
            options: GpuDelegateOptions(true, TFLGpuDelegateWaitType.active),
          );
      var interpreterOptions = InterpreterOptions()..addDelegate(gpuDelegate);
      final interpreter = await Interpreter.fromAsset('your_model.tflite',
          options: interpreterOptions);
      

Refer Tests to see more example code for each method.

Credits #

  • Tian LIN, Jared Duke, Andrew Selle, YoungSeok Yoon, Shuangfeng Li from the TensorFlow Lite Team for their invaluable guidance.
  • Authors of dart-lang/tflite_native.
734
likes
0
pub points
98%
popularity

Publisher

verified publishertensorflow.org

TensorFlow Lite Flutter plugin provides an easy, flexible, and fast Dart API to integrate TFLite models in flutter apps across mobile and desktop platforms.

Repository (GitHub)
View/report issues

License

unknown (license)

Dependencies

ffi, flutter, path, quiver

More

Packages that depend on tflite_flutter