tflite_flutter 0.3.0 tflite_flutter: ^0.3.0 copied to clipboard
TensorFlow Lite Flutter plugin provides easy, flexible and fast Dart API to integrate TFLite models in flutter apps.
TensorFlow Lite Flutter Plugin #
TensorFlow Lite plugin provides a dart API for accessing TensorFlow Lite interpreter and performing inference. It binds to TensorFlow Lite C API using dart:ffi.
(Most Important) Initial setup #
Add dynamic libraries to your app
-
Linux/Mac Users
Place the script install.sh at the root of your project.
Execute
sh install.sh
at the root of your project to automatically download and place binaries at appropriate folders.The binaries installed will not include support for
GpuDelegateV2
andNnApiDelegate
howeverInterpreterOptions().useNnApiForAndroid
can still be used.Use
install.sh -d
instead if you wish to use theseGpuDelegateV2
andNnApiDelegate
. -
Windows users
Place the script install.bat at the root of your project.
Execute
install.bat
at the root of your project to automatically download and place binaries at appropriate folders.If you want to use delegate support then execute
install.bat -d
.These scripts install pre-built binaries based on latest stable tensorflow release.
Why do we need to do this?
tflite_flutter
dynamically links to C APIs which are supplied in the form of libtensorflowlite_c.so
on Android and TensorFlowLiteC.framework
on iOS.
For Android, We need to manually download these binaries from release assets and place the libtensorflowlite_c.so files in the <root>/android/app/src/main/jniLibs/
directory for each arm, arm64, x86, x86_64 architecture as done here in the example app.
No setup needed for iOS as of now, TensorFlowLiteC.framework
is embedded in the plugin itself.
How to build locally ?
The pre-built binaries are updated with each stable tensorflow release. However, you many want to use latest unstable tf releases or older tf versions, for that proceed to build locally, if you are unable to find the required version in release assets.
Make sure you have required version of bazel installed. (Check TF_MIN_BAZEL_VERSION, TF_MAX_BAZEL_VERSION in configure.py)
- Android
Configure your workspace for android builds as per these instructions.
For TensorFlow >= v2.2
bazel build -c opt --cxxopt=--std=c++11 --config=android_arm //tensorflow/lite/c:tensorflowlite_c
// similarily for arm64 use --config=android_arm64
For TensorFlow <= v2.1
bazel build -c opt --cxxopt=--std=c++11 --config=android_arm //tensorflow/lite/experimental/c:libtensorflowlite_c.so
// similarily for arm64 use --config=android_arm64
- iOS
Refer instructions on TensorFlow Lite website to build locally for iOS.
Note: You must use macOS for building iOS.
Import #
import 'package:tflite_flutter/tflite_flutter.dart';
Usage instructions #
Creating the Interpreter #
Interpreter can be created in three ways:
-
directly from asset (easiest)
Place
your_model.tflite
inassets
directory. Make sure to include assets inpubspec.yaml
.final interpreter = await tfl.Interpreter.fromAsset('your_model.tflite');
-
from buffer
final buffer = await getBuffer('assets/your_model.tflite'); final interpreter = Interpreter.fromBuffer(buffer); Future<Uint8List> getBuffer(String filePath) async { final rawAssetFile = await rootBundle.load(filePath); final rawBytes = rawAssetFile.buffer.asUint8List(); return rawBytes; }
-
from file
final dataFile = await getFile('assets/your_model.tflite'); final interpreter = Interpreter.fromFile(dataFile); Future<File> getFile(String fileName) async { final appDir = await getTemporaryDirectory(); final appPath = appDir.path; final fileOnDevice = File('$appPath/$fileName'); final rawAssetFile = await rootBundle.load(fileName); final rawBytes = rawAssetFile.buffer.asUint8List(); await fileOnDevice.writeAsBytes(rawBytes, flush: true); return fileOnDevice; }
Performing inference #
-
For single input and output
Use
void run(Object input, Object output)
.// For ex: if input tensor shape [1,5] and type is float32 var input = [[1.23, 6.54, 7.81. 3.21, 2.22]]; // if output tensor shape [1,2] and type is float32 var output = List(1*2).reshape([1,2]); // inference interpreter.run(input, output); // print the output print(output);
-
For multiple inputs and outputs
Use
void runForMultipleInputs(List<Object> inputs, Map<int, Object> outputs)
.var input0 = [1.23]; var input1 = [2.43]; // input: List<Object> var inputs = [input0, input1, input0, input1]; var output0 = List<double>(1); var output1 = List<double>(1); // output: Map<int, Object> var outputs = {0: output0, 1: output1}; // inference interpreter.runForMultipleInputs(inputs, outputs); // print outputs print(outputs)
Closing the interpreter #
interpreter.close();
Improve performance using delegate support #
Note: This feature is under testing and could be unstable with some builds and on some devices.
-
NNAPI delegate for Android
var interpreterOptions = InterpreterOptions()..useNnApiForAndroid = true; final interpreter = await Interpreter.fromAsset('your_model.tflite', options: interpreterOptions);
or
var interpreterOptions = InterpreterOptions()..addDelegate(NnApiDelegate()); final interpreter = await Interpreter.fromAsset('your_model.tflite', options: interpreterOptions);
-
GPU delegate for Android and iOS
- Android GpuDelegateV2
final gpuDelegateV2 = GpuDelegateV2( options: GpuDelegateOptionsV2( false, TfLiteGpuInferenceUsage.fastSingleAnswer, TfLiteGpuInferencePriority.minLatency, TfLiteGpuInferencePriority.auto, TfLiteGpuInferencePriority.auto, )); var interpreterOptions = InterpreterOptions()..addDelegate(gpuDelegateV2); final interpreter = await Interpreter.fromAsset('your_model.tflite', options: interpreterOptions);
- iOS Metal Delegate (GpuDelegate)
final gpuDelegate = GpuDelegate( options: GpuDelegateOptions(true, TFLGpuDelegateWaitType.active), ); var interpreterOptions = InterpreterOptions()..addDelegate(gpuDelegate); final interpreter = await Interpreter.fromAsset('your_model.tflite', options: interpreterOptions);
Refer Tests to see more example code for each method.
Refer Text Classification Flutter Example App for demo.
Credits #
- Tian LIN, Jared Duke, Andrew Selle, YoungSeok Yoon, Shuangfeng Li from the TensorFlow Lite Team for their invaluable guidance.
- Authors of dart-lang/tflite_native.