text_analysis 0.12.0-1 text_analysis: ^0.12.0-1 copied to clipboard
Text analyzer that extracts tokens from text for use in full-text search queries and indexes.
example/text_analysis_example.dart
// BSD 3-Clause License
// Copyright (c) 2022, GM Consult Pty Ltd
/// Import the text_analysis package by adding this line at the top of your
/// code file.
import 'package:text_analysis/src/_index.dart';
void main() async {
//
// tokenize the paragraphs and print the terms.
_printTerms(await _tokenizeParagraphs(exampleText));
// tokenize the zones in a json document and print the terms.
_printTerms(await _tokenizeJson(json, zones));
// get a a hashmap of tri-gram to terms in exampleText.first
await _getKgramIndex(exampleText.first, 3);
// print text statistics and readibility scores for readbilityExample
await _analyseText(readabilityExample);
}
/// Print text statistics and readibility scores for [text].
Future<void> _analyseText(String text) async {
//
// hydrate the TextDocument
final textDoc = await TextDocument.analyze(sourceText: text);
// print the `average sentence length`
print('Average sentence length: ${textDoc.averageSentenceLength()}');
// print the `average syllable count`
print(
'Average syllable count: ${textDoc.averageSyllableCount().toStringAsFixed(2)}');
// print the `Flesch reading ease score`
print(
'Flesch Reading Ease: ${textDoc.fleschReadingEaseScore().toStringAsFixed(1)}');
// print the `Flesch-Kincaid grade level`
print('Flesch-Kincaid Grade Level: ${textDoc.fleschKincaidGradeLevel()}');
// output:
// Average sentence length: 13
// Average syllable count: 1.85
// Flesch Reading Ease: 37.5
// Flesch-Kincaid Grade Level: 11
}
/// Print the terms in List<[Token]>.
void _printTerms(Iterable<Token> tokens) {
// map the document's tokens to a list of terms (strings)
final terms = tokens.map((e) => e.term).toList();
// print the terms
print(terms);
/// Tokenize the [zones] in a [json] document.
}
/// Gets the k-grams for the terms in [text] and returns a hashmap of k-gram
/// to term.
Future<Map<KGram, Set<Term>>> _getKgramIndex(SourceText text, int k) async {
final tokens = await TextTokenizer().tokenize(text);
// get the bi-grams
final Map<String, Set<Term>> kGramIndex = tokens.kGrams(3);
// add the tri-grams
// kGramIndex.addAll(document.tokens.kGrams(3));
print('${'k-gram'.padRight(8)} Terms Set');
for (final entry in kGramIndex.entries) {
print('${entry.key.padRight(8)} ${entry.value}');
}
return kGramIndex;
}
/// Tokenize the [zones] in a [json] document.
Future<List<Token>> _tokenizeJson(
Map<String, dynamic> json, List<Zone> zones) async {
// use a TextTokenizer instance to tokenize the json
final tokens = await TextTokenizer().tokenizeJson(json, zones);
// map the document's tokens to a list of terms (strings)
final terms = tokens.map((e) => e.term).toList();
// print the terms
print(terms);
return tokens;
}
/// Tokenize [paragraphs] to a List<[Token]>.
Future<List<Token>> _tokenizeParagraphs(Iterable<String> paragraphs) async {
// Initialize a StringBuffer to hold the source text
final sourceBuilder = StringBuffer();
// Concatenate the elements of [text] using line-endings
for (final src in exampleText) {
sourceBuilder.writeln(src);
}
// convert the StringBuffer to a String
final source = sourceBuilder.toString();
// use a TextTokenizer instance to tokenize the source
final tokens = await TextTokenizer().tokenize(source);
// map the document's tokens to a list of terms (strings)
final terms = tokens.map((e) => e.term).toList();
// print the terms
print(terms);
return tokens;
}
final readabilityExample =
'The Australian platypus is seemingly a hybrid of a mammal and reptilian creature.';
/// For this example we use a few paragraphs of text that contains
/// numbers, currencies, abbreviations, hyphens and identifiers.
const exampleText = [
'The Dow Jones rallied even as U.S. troops were put on alert amid '
'the Ukraine crisis. Tesla stock fought back while Apple '
'stock struggled. ',
'[TSLA.XNGS] Tesla\'s #TeslaMotor Stock Is Getting Hammered.',
'Among the best EV stocks to buy and watch, Tesla (TSLA.XNGS) is pulling back '
r'from new highs after a failed breakout above a $1,201.05 double-bottom '
'entry. ',
'Meanwhile, Peloton reportedly finds an activist investor knocking '
'on its door after a major stock crash fueled by strong indications of '
'mismanagement. In a scathing new letter released Monday, activist '
'Tesla Capital is pushing for Peloton to fire CEO, Chairman and '
'founder John Foley and explore a sale.'
];
/// A JSON document that will be tokenized by [tokenizeJson].
final json = {
'avatarImageUrl':
'https://firebasestorage.googleapis.com/v0/b/buysellhold-322d1.appspot.com/o/logos%2FTSLA%3AXNGS.png?alt=media&token=c365db47-9482-4237-9267-82f72854d161',
'description':
'A 20-for-1 stock split gave a nice short-term boost to Amazon (AMZN) - Get Amazon.com Inc. Report in late May and in early June, while Alphabet (GOOGL) - Get Alphabet Inc. Report (GOOG) - Get Alphabet Inc. Report has a planned 20-for-1 stock split for next month. Tesla (TSLA) - Get Tesla Inc. Report is also waiting on shareholder approval for a 3-for-1 stock split. ',
'entityType': 'NewsItem',
'hashTags': ['#Tesla'],
'id': 'ee1760a1-a259-50dc-b11d-8baf34d7d1c5',
'itemGuid':
'trading-shopify-stock-ahead-of-10-for-1-stock-split-technical-analysis-june-2022?puc=yahoo&cm_ven=YAHOO&yptr=yahoo',
'linkUrl':
'https://www.thestreet.com/investing/trading-shopify-stock-ahead-of-10-for-1-stock-split-technical-analysis-june-2022?puc=yahoo&cm_ven=YAHOO&yptr=yahoo',
'locale': 'Locale.en_US',
'name': 'Shopify Stock Split What the Charts Say Ahead of 10-for-1 Split',
'publicationDate': '2022-06-28T17:44:00.000Z',
'publisher': {
'linkUrl': 'http://www.thestreet.com/',
'title': 'TheStreet com'
},
'timestamp': 1656464362162
};
/// The zones in [json] to be tokenized.
const zones = ['name', 'description', 'hashTags', 'publicationDate'];