ml_linalg 12.16.0 ml_linalg: ^12.16.0 copied to clipboard
SIMD-based linear algebra and statistics for data science
SIMD-based linear algebra and statistics for data science with Dart
Table of contents
- What is linear algebra
- What is SIMD
- Vectors
- A couple of words about the underlying architecture
- Vector benchmarks
- Vector operations
- Vectors sum
- Vectors subtraction
- Element-wise vector by vector multiplication
- Element-wise vector by vector division
- Euclidean norm
- Manhattan norm
- Mean value
- Sum of all vector elements
- Product of all vector elements
- Element-wise power
- Element-wise exp
- Dot product
- Sum of a vector and a scalar
- Subtraction of a scalar from a vector
- Multiplication of a vector by a scalar
- Division of a vector by a scalar
- Euclidean distance between two vectors
- Manhattan distance between two vectors
- Cosine distance between two vectors
- Vector normalization (using Euclidean norm)
- Vector normalization (using Manhattan norm)
- Vector rescaling (min-max normalization)
- Vector serialization
- Vector mapping
- A couple of words about the underlying architecture
- Matrices
- Matrix operations
- Creation of diagonal matrix
- Creation of scalar matrix
- Creation of identity matrix
- Creation of column matrix
- Creation of row matrix
- Sum of a matrix and another matrix
- Sum of a matrix and a scalar
- Multiplication of a matrix and a vector
- Multiplication of a matrix and another matrix
- Multiplication of a matrix and a scalar
- Hadamard product (element-wise matrices multiplication)
- Element-wise matrices subtraction
- Matrix transposition
- Matrix row-wise reduce
- Matrix column-wise reduce
- Matrix row-wise mapping
- Matrix column-wise mapping
- Matrix element-wise mapping
- Getting max value of the matrix
- Getting min value of the matrix
- Matrix element-wise power
- Matrix element-wise exp
- Sum of all matrix elements
- Product of all matrix elements
- Matrix indexing and sampling
- Add new columns to a matrix
- Matrix serialization/deserialization
- Matrix operations
- Contacts
Linear algebra #
In a few words, linear algebra is a branch of mathematics that is working with vectors and matrices.
Let's give a simple definition of Vector and Matrix. Vector is an ordered set of numbers representing a point in the space where the vector is directed from the origin. Matrix is a collection of vectors that is used to map vectors from one space to another.
Vectors and matrices are extremely powerful tools which can be used in real-life applications, such as machine learning algorithms. There are many implementations of these great mathematical entities in a plenty of programming languages, and as Dart offers developers good instrumentarium, e.g. highly optimized virtual machine and rich out-of-the-box library, Dart-based implementation of vectors and matrices has to be quite performant.
Among myriad of standard Dart tools there are SIMD data types. Namely support of SIMD computational architecture served as a source of inspiration for creating this library.
What is SIMD? #
SIMD stands for Single instruction, multiple data
- it's a computer architecture that allows
to perform uniform mathematical operations in parallel on a list-like data structure. For instance, one has two arrays:
and one needs to add these arrays element-wise. Using the regular architecture this operation could be done in the following manner:
We need to do 4 operations one by one in a row. Using SIMD architecture we may perform one mathematical operation on several operands in parallel, thus element-wise sum of two arrays will be done for just one step:
Vectors #
A couple of words about the underlying architecture #
The library contains two high performant vector classes based on Float32x4 and Float64x2 data types - Float32x4Vector and Float64x2Vector (the second one is generated from the source code of the first vector's implementation)
Most of element-wise operations in the first one are performed in four "threads" and in the second one - in two "threads".
Implementation of both classes is hidden from the library's users. You can create a
Float32x4Vector
or a Float64x2Vector
instance via Vector factory (see examples below).
The vectors are immutable: once created, the vector cannot be changed. All the vector operations
lead to creation of a new vector instance (of course, if the operation is supposed to return a Vector
).
Both classes implement Iterable<double>
interface, so it's possible to use them as regular
iterable collections.
It's possible to use vector instances as keys for HashMap
and similar data structures
and to look up a value by the vector-key, since the hash code is the same for equal vectors:
import 'package:ml_linalg/vector.dart';
final map = HashMap<Vector, bool>();
map[Vector.fromList([1, 2, 3, 4, 5])] = true;
print(map[Vector.fromList([1, 2, 3, 4, 5])]); // true
print(Vector.fromList([1, 2, 3, 4, 5]).hashCode == Vector.fromList([1, 2, 3, 4, 5]).hashCode); // true
Vector benchmarks #
To see the performance benefits provided by the library's vector classes, one may visit benchmark
directory: one may find
there a baseline benchmark -
element-wise summation of two regular List instances and a benchmark
of a similar operation, but performed on two Float32x4Vector
instances on the same amount of elements and compare
the timings:
- Baseline benchmark (executed on Macbook Air mid 2017), 2 regular lists each with 10,000,000 elements:
- Actual benchmark (executed on Macbook Air mid 2017), 2 vectors each with 10,000,000 elements:
It took 15 seconds to create a new regular list by summing the elements of two lists, and 0.7 second to sum two vectors - the difference is significant.
Vector operations examples #
Vectors sum
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1 + vector2;
print(result.toList()); // [3.0, 5.0, 7.0, 9.0, 11.0]
Vectors subtraction
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([4.0, 5.0, 6.0, 7.0, 8.0]);
final vector2 = Vector.fromList([2.0, 3.0, 2.0, 3.0, 2.0]);
final result = vector1 - vector2;
print(result.toList()); // [2.0, 2.0, 4.0, 4.0, 6.0]
Element wise vector by vector multiplication
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1 * vector2;
print(result.toList()); // [2.0, 6.0, 12.0, 20.0, 30.0]
Element wise vector by vector division
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([6.0, 12.0, 24.0, 48.0, 96.0]);
final vector2 = Vector.fromList([3.0, 4.0, 6.0, 8.0, 12.0]);
final result = vector1 / vector2;
print(result.toList()); // [2.0, 3.0, 4.0, 6.0, 8.0]
Euclidean norm
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.norm();
print(result); // sqrt(2^2 + 3^2 + 4^2 + 5^2 + 6^2) = sqrt(90) ~~ 9.48
Manhattan norm
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.norm(Norm.manhattan);
print(result); // 2 + 3 + 4 + 5 + 6 = 20.0
Mean value
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.mean();
print(result); // (2 + 3 + 4 + 5 + 6) / 5 = 4.0
Sum of all vector elements
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector.sum();
print(result); // 2 + 3 + 4 + 5 + 6 = 20.0
Product of all vector elements
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector.prod();
print(result); // 2 * 3 * 4 * 5 * 6 = 720
Element-wise power
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector.pow(3);
print(result); // [2 ^ 3 = 8.0, 3 ^ 3 = 27.0, 4 ^ 3 = 64.0, 5 ^3 = 125.0, 6 ^ 3 = 216.0]
Element-wise exp
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector.exp();
print(result); // [e ^ 2, e ^ 3, e ^ 4, e ^ 5, e ^ 6]
Dot product of two vectors
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.dot(vector2);
print(result); // 1.0 * 2.0 + 2.0 * 3.0 + 3.0 * 4.0 + 4.0 * 5.0 + 5.0 * 6.0 = 70.0
Sum of a vector and a scalar
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final scalar = 5.0;
final result = vector1 + scalar;
print(result.toList()); // [6.0, 7.0, 8.0, 9.0, 10.0]
Subtraction of a scalar from a vector
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final scalar = 5.0;
final result = vector - scalar;
print(result.toList()); // [-4.0, -3.0, -2.0, -1.0, 0.0]
Multiplication of a vector by a scalar
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final scalar = 5.0;
final result = vector * scalar;
print(result.toList()); // [5.0, 10.0, 15.0, 20.0, 25.0]
Division of a vector by a scalar
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([25.0, 50.0, 75.0, 100.0, 125.0]);
final scalar = 5.0;
final result = vector.scalarDiv(scalar);
print(result.toList()); // [5.0, 10.0, 15.0, 20.0, 25.0]
Euclidean distance between two vectors
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.distanceTo(vector2, distance: Distance.euclidean);
print(result); // ~~2.23
Manhattan distance between two vectors
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.distanceTo(vector2, distance: Distance.manhattan);
print(result); // 5.0
Cosine distance between two vectors
import 'package:ml_linalg/linalg.dart';
final vector1 = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final vector2 = Vector.fromList([2.0, 3.0, 4.0, 5.0, 6.0]);
final result = vector1.distanceTo(vector2, distance: Distance.cosine);
print(result); // 0.00506
Vector normalization using Euclidean norm
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, 2.0, 3.0, 4.0, 5.0]);
final result = vector.normalize(Norm.euclidean);
print(result); // [0.134, 0.269, 0.404, 0.539, 0.674]
Vector normalization using Manhattan norm
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, -2.0, 3.0, -4.0, 5.0]);
final result = vector.normalize(Norm.manhattan);
print(result); // [0.066, -0.133, 0.200, -0.266, 0.333]
Vector rescaling (min-max normalization)
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, -2.0, 3.0, -4.0, 5.0, 0.0]);
final result = vector.rescale();
print(result); // [0.555, 0.222, 0.777, 0.0, 1.0, 0.444]
Vector serialization
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, -2.0, 3.0, -4.0, 5.0, 0.0]);
final serialized = vector.toJson();
print(serialized); // it yields a serializable representation of the vector
final restoredVector = Vector.fromJson(serialized);
print(restoredVector); // [1.0, -2.0, 3.0, -4.0, 5.0, 0.0]
Vector mapping
import 'package:ml_linalg/linalg.dart';
final vector = Vector.fromList([1.0, -2.0, 3.0, -4.0, 5.0, 0.0]);
final mapped = vector.mapToVector((el) => el * 2);
print(mapped); // [2.0, -4.0, 6.0, -8.0, 10.0, 0.0]
print(mapped is Vector); // true
print(identical(vector, mapped)); // false
Matrices #
Along with SIMD vectors, the library presents SIMD-based Matrices. One can use the matrices via
Matrix factory. The matrices are immutable as well
as vectors and also they implement Iterable
interface (to be precise, Iterable<Iterable<double>>
), thus it's possible
to use them as a regular iterable collection.
Matrices are serializable, and that means that one can easily convert a Matrix instance to a json-serializable map
via toJson
method, see the examples below.
Matrix operations examples #
Creation of diagonal matrix
import 'package:ml_linalg/matrix.dart';
final matrix = Matrix.diagonal([1, 2, 3, 4, 5]);
print(matrix);
The output:
Matrix 5 x 5:
(1.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 2.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 3.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 4.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 5.0)
Creation of scalar matrix
import 'package:ml_linalg/matrix.dart';
final matrix = Matrix.scalar(3, 5);
print(matrix);
The output:
Matrix 5 x 5:
(3.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 3.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 3.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 3.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 3.0)
Creation of identity matrix
import 'package:ml_linalg/matrix.dart';
final matrix = Matrix.identity(5);
print(matrix);
The output:
Matrix 5 x 5:
(1.0, 0.0, 0.0, 0.0, 0.0)
(0.0, 1.0, 0.0, 0.0, 0.0)
(0.0, 0.0, 1.0, 0.0, 0.0)
(0.0, 0.0, 0.0, 1.0, 0.0)
(0.0, 0.0, 0.0, 0.0, 1.0)
Creation of column matrix
final matrix = Matrix.column([1, 2, 3, 4, 5]);
print(matrix);
The output:
Matrix 5 x 1:
(1.0)
(2.0)
(3.0)
(4.0)
(5.0)
Creation of row matrix
final matrix = Matrix.row([1, 2, 3, 4, 5]);
print(matrix);
The output:
Matrix 1 x 5:
(1.0, 2.0, 3.0, 4.0, 5.0)
Sum of a matrix and another matrix
import 'package:ml_linalg/linalg.dart';
final matrix1 = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
final matrix2 = Matrix.fromList([
[10.0, 20.0, 30.0, 40.0],
[-5.0, 16.0, 2.0, 18.0],
[2.0, -1.0, -2.0, -7.0],
]);
print(matrix1 + matrix2);
// [
// [11.0, 22.0, 33.0, 44.0],
// [0.0, 22.0, 9.0, 26.0],
// [11.0, -1.0, -4.0, -10.0],
// ];
Sum of a matrix and a scalar
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
print(matrix + 7);
// [
// [8.0, 9.0, 10.0, 11.0],
// [12.0, 13.0, 14.0, 15.0],
// [16.0, 7.0, 5.0, 4.0],
// ];
Multiplication of a matrix and a vector
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
final vector = Vector.fromList([2.0, 3.0, 4.0, 5.0]);
final result = matrix * vector;
print(result);
// a vector-column [
// [40],
// [96],
// [-5],
//]
Multiplication of a matrix and another matrix
import 'package:ml_linalg/linalg.dart';
final matrix1 = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
final matrix2 = Matrix.fromList([
[1.0, 2.0],
[5.0, 6.0],
[9.0, .0],
[-9.0, 1.0],
]);
final result = matrix1 * matrix2;
print(result);
//[
// [2.0, 18.0],
// [26.0, 54.0],
// [18.0, 15.0],
//]
Multiplication of a matrix and a scalar
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
print(matrix * 3);
// [
// [3.0, 6.0, 9.0, 12.0],
// [15.0, 18.0, 21.0, 24.0],
// [27.0, .0, -6.0, -9.0],
// ];
Hadamard product (element-wise matrices multiplication)
import 'package:ml_linalg/linalg.dart';
final matrix1 = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, 0.0, -2.0, -3.0],
]);
final matrix2 = Matrix.fromList([
[7.0, 1.0, 9.0, 2.0],
[2.0, 4.0, 3.0, -8.0],
[0.0, -10.0, -2.0, -3.0],
]);
print(matrix1.multiply(matrix2));
// [
// [ 7.0, 2.0, 27.0, 8.0],
// [10.0, 24.0, 21.0, -64.0],
// [ 0.0, 0.0, 4.0, 9.0],
// ];
Element wise matrices subtraction
import 'package:ml_linalg/linalg.dart';
final matrix1 = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
final matrix2 = Matrix.fromList([
[10.0, 20.0, 30.0, 40.0],
[-5.0, 16.0, 2.0, 18.0],
[2.0, -1.0, -2.0, -7.0],
]);
print(matrix1 - matrix2);
// [
// [-9.0, -18.0, -27.0, -36.0],
// [10.0, -10.0, 5.0, -10.0],
// [7.0, 1.0, .0, 4.0],
// ];
Matrix transposition
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
[9.0, .0, -2.0, -3.0],
]);
final result = matrix.transpose();
print(result);
//[
// [1.0, 5.0, 9.0],
// [2.0, 6.0, .0],
// [3.0, 7.0, -2.0],
// [4.0, 8.0, -3.0],
//]
Matrix row-wise reduce
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
]);
final reduced = matrix.reduceRows((combine, row) => combine + row);
print(reduced); // [6.0, 8.0, 10.0, 12.0]
Matrix column-wise reduce
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 17.0, 18.0],
[21.0, 22.0, 23.0, 24.0],
]);
final result = matrix.reduceColumns((combine, vector) => combine + vector);
print(result); // [50, 66, 90]
Matrix row-wise mapping
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
]);
final modifier = Vector.filled(4, 2.0);
final newMatrix = matrix.rowsMap((row) => row + modifier);
print(newMatrix);
// [
// [3.0, 4.0, 5.0, 6.0],
// [7.0, 8.0, 9.0, 10.0],
// ]
Matrix column-wise mapping
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0, 4.0],
[5.0, 6.0, 7.0, 8.0],
]);
final modifier = Vector.filled(2, 2.0);
final newMatrix = matrix.columnsMap((column) => column + modifier);
print(newMatrix);
// [
// [3.0, 4.0, 5.0, 6.0],
// [7.0, 8.0, 9.0, 10.0],
// ]
Matrix element-wise mapping
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 0.0, 18.0],
[21.0, 22.0, -23.0, 24.0],
], dtype: DType.float32);
final result = matrix.mapElements((element) => element * 2);
print(result);
// [
// [22.0, 24.0, 26.0, 28.0],
// [30.0, 32.0, 0.0, 36.0],
// [42.0, 44.0, -46.0, 48.0],
// ]
Getting max value of the matrix
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 17.0, 18.0],
[21.0, 22.0, 23.0, 24.0],
[24.0, 32.0, 53.0, 74.0],
]);
final maxValue = matrix.max();
print(maxValue);
// 74.0
Getting min value of the matrix
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 0.0, 18.0],
[21.0, 22.0, -23.0, 24.0],
[24.0, 32.0, 53.0, 74.0],
]);
final minValue = matrix.min();
print(minValue);
// -23.0
Matrix element-wise power
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
]);
final result = matrix.pow(3.0);
print(result);
// [1 ^ 3 = 1, 2 ^ 3 = 8, 3 ^ 3 = 27 ]
// [4 ^ 3 = 64, 5 ^ 3 = 125, 6 ^ 3 = 216]
// [7 ^ 3 = 343, 8 ^ 3 = 512, 9 ^ 3 = 729]
Matrix element-wise exp
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
]);
final result = matrix.exp();
print(result);
// [e ^ 1, e ^ 2, e ^ 3]
// [e ^ 4, e ^ 5, e ^ 6]
// [e ^ 7, e ^ 8, e ^ 9]
Sum of all matrix elements
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
]);
final result = matrix.sum();
print(result); // 1.0 + 2.0 + 3.0 + 4.0 + 5.0 + 6.0 + 7.0 + 8.0 + 9.0
Product of all matrix elements
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[1.0, 2.0, 3.0],
[4.0, 5.0, 6.0],
[7.0, 8.0, 9.0],
]);
final result = matrix.product();
print(result); // 1.0 * 2.0 * 3.0 * 4.0 * 5.0 * 6.0 * 7.0 * 8.0 * 9.0
Matrix indexing and sampling
To access a certain row vector of the matrix one may use []
operator:
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 0.0, 18.0],
[21.0, 22.0, -23.0, 24.0],
[24.0, 32.0, 53.0, 74.0],
]);
final row = matrix[2];
print(row); // [21.0, 22.0, -23.0, 24.0]
The library's matrix interface offers sample
method that is supposed to return a new matrix,
consisting of different segments of a source matrix. It's possible to build a new matrix from certain columns and
vectors and they should not be necessarily subsequent.
For example, one needs to create a matrix from rows 1, 3, 5 and columns 1 and 3. To do so, it's needed to perform the following:
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
//| 1 | | 3 |
[4.0, 8.0, 12.0, 16.0, 34.0], // 1 Range(0, 1)
[20.0, 24.0, 28.0, 32.0, 23.0],
[36.0, .0, -8.0, -12.0, 12.0], // 3 Range(2, 3)
[16.0, 1.0, -18.0, 3.0, 11.0],
[112.0, 10.0, 34.0, 2.0, 10.0], // 5 Range(4, 5)
]);
final result = matrix.sample(
rowIndices: [0, 2, 4],
columnIndices: [0, 2],
);
print(result);
/*
[4.0, 12.0],
[36.0, -8.0],
[112.0, 34.0]
*/
Add new columns to a matrix
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 0.0, 18.0],
[21.0, 22.0, -23.0, 24.0],
[24.0, 32.0, 53.0, 74.0],
], dtype: DType.float32);
final updatedMatrix = matrix.insertColumns(0, [
Vector.fromList([1.0, 2.0, 3.0, 4.0]),
Vector.fromList([-1.0, -2.0, -3.0, -4.0]),
]);
print(updatedMatrix);
// [
// [1.0, -1.0, 11.0, 12.0, 13.0, 14.0],
// [2.0, -2.0, 15.0, 16.0, 0.0, 18.0],
// [3.0, -3.0, 21.0, 22.0, -23.0, 24.0],
// [4.0, -4.0, 24.0, 32.0, 53.0, 74.0],
// ]
print(updatedMatrix == matrix); // false
Matrix serialization/deserialization
To convert a matrix to a json-serializable map one may use toJson
method:
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromList([
[11.0, 12.0, 13.0, 14.0],
[15.0, 16.0, 0.0, 18.0],
[21.0, 22.0, -23.0, 24.0],
[24.0, 32.0, 53.0, 74.0],
]);
final serialized = matrix.toJson();
To restore a serialized matrix one may use Matrix.fromJson
constructor:
import 'package:ml_linalg/linalg.dart';
final matrix = Matrix.fromJson(serialized);
Contacts #
If you have questions, feel free to write me on