google_mlkit_object_detection 0.5.0 google_mlkit_object_detection: ^0.5.0 copied to clipboard
A Flutter plugin to use Google's ML Kit Object Detection and Tracking to detect and track objects in an image or live camera feed.
Google's ML Kit Object Detection and Tracking for Flutter #
A Flutter plugin to use Google's ML Kit Object Detection and Tracking to detect and track objects in an image or live camera feed.
Getting Started #
Before you get started read about the requirements and known issues of this plugin here.
Firebase dependency for remote models #
Object Detection and Tracking can be used with both Base Models and Custom Models. Base models are bundled with the app, and custom Models can either be bundled with the app or downloaded from Firebase.
If you wish to use remote models hosted in Firebase, you must first enable the feature in iOS. Please see the additional setup instructions here.
To add Firebase to your project follow these steps:
Usage #
Object Detection and Tracking #
Create an instance of InputImage
Create an instance of InputImage
as explained here.
final InputImage inputImage;
Create an instance of ObjectDetector
// Use DetectionMode.stream when processing camera feed.
// Use DetectionMode.single when processing a single image.
final mode = DetectionMode.stream or DetectionMode.single;
// Options to configure the detector while using with base model.
final options = ObjectDetectorOptions(...);
// Options to configure the detector while using a local custom model.
final options = LocalObjectDetectorOptions(...);
// Options to configure the detector while using a Firebase model.
final options = FirebaseObjectDetectorOptions(...);
final objectDetector = ObjectDetector(options: options);
Process image
final List<DetectedObject> objects = await objectDetector.processImage(inputImage);
for(DetectedObject detectedObject in _objects){
final rect = detectedObject.boundingBox;
final trackingId = detectedObject.trackingId;
for(Label label in detectedObject.labels){
print('${label.text} ${label.confidence}');
}
}
Release resources with close()
objectDetector.close();
Load local custom model #
To use a local custom model add the tflite model to your pubspec.yaml
:
assets:
- assets/ml/
Add this method:
import 'dart:io';
import 'package:flutter/services.dart';
import 'package:path/path.dart';
import 'package:path_provider/path_provider.dart';
Future<String> _getModel(String assetPath) async {
if (io.Platform.isAndroid) {
return 'flutter_assets/$assetPath';
}
final path = '${(await getApplicationSupportDirectory()).path}/$assetPath';
await io.Directory(dirname(path)).create(recursive: true);
final file = io.File(path);
if (!await file.exists()) {
final byteData = await rootBundle.load(assetPath);
await file.writeAsBytes(byteData.buffer
.asUint8List(byteData.offsetInBytes, byteData.lengthInBytes));
}
return file.path;
}
Create an instance of [ImageLabeler]:
final modelPath = await _getModel('assets/ml/object_labeler.tflite');
final options = LocalObjectDetectorOptions(
modelPath: modelPath,
classifyObjects: true,
multipleObjects: true,
);
final objectDetector = ObjectDetector(options: options);
Managing remote models #
Create an instance of model manager
final modelManager = FirebaseObjectDetectorModelManager();
Check if model is downloaded
final bool response = await modelManager.isModelDownloaded(model);
Download model
final bool response = await modelManager.downloadModel(model);
Delete model
final bool response = await modelManager.deleteModel(model);
Example app #
Find the example app here.
Contributing #
Contributions are welcome. In case of any problems look at existing issues, if you cannot find anything related to your problem then open an issue. Create an issue before opening a pull request for non trivial fixes. In case of trivial fixes open a pull request directly.