flutter_tex 0.0.18 flutter_tex: ^0.0.18 copied to clipboard
A Flutter package to render LaTeX with full HTML support.
import 'package:flutter/material.dart';
import 'package:flutter_tex/flutter_tex.dart';
main() async {
runApp(FlutterTeX());
}
class FlutterTeX extends StatefulWidget {
@override
_FlutterTeXState createState() => _FlutterTeXState();
}
class _FlutterTeXState extends State<FlutterTeX> {
String teX = Uri.encodeComponent(r"""
<p>
A simple Example to render \( \rm\\TeX \) in flutter<br>
<style>
.card {
box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2);
transition: 0.3s;
width: 40%;
}
.card:hover {
box-shadow: 0 8px 16px 0 rgba(0, 0, 0, 0.2);
}
.container {
padding: 2px 16px;
}
</style>
<div class="card">
<div class="container">
<p>
\begin{align}
\dot{x} & = \sigma(y-x) \\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}
</p>
</div>
</div>
<br>
<br>
When \(a \ne 0 \), there are two solutions to \(ax^2 + bx + c = 0\) and they are
$$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.$$<br>
$$ \oint_C {E \cdot d\ell = - \frac{d}{{dt}}} \int_S {B_n dA} $$<br>
Bohr Radius
\( a_0 = \frac{{\hbar ^2 }}{{m_e ke^2 }} \)<br>
Relationship between Energy and Principal Quantum Number
\( E_n = - R_H \left( {\frac{1}{{n^2 }}} \right) = \frac{{ - 2.178 \times 10^{ - 18} }}{{n^2 }}joule \)<br><br>
$$\ce{CO2 + C -> 2 CO}$$ <br><br>
$$\ce{Hg^2+ ->[I-] HgI2 ->[I-] [Hg^{II}I4]^2-}$$ <br><br>
$$\ce{x Na(NH4)HPO4 ->[\Delta] (NaPO3)_x + x NH3 ^ + x H2O}$$ <br><br>
</p>
""");
@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: Text("Flutter TeX Example"),
),
body: TeXView(
teXHTML: teX,
),
),
);
}
}