eneural_net 1.1.3 copy "eneural_net: ^1.1.3" to clipboard
eneural_net: ^1.1.3 copied to clipboard

AI Library to create efficient Artificial Neural Networks. Computation uses SIMD (Single Instruction Multiple Data) to improve performance.

1.1.3 #

  • ANN:
    • Added toJson, toJsonMap and fromJson.
  • Layer:
    • Added toJson, toJsonMap and fromJson.
  • ActivationFunction:
    • Added toJson, toJsonMap, fromJson and byName.
  • Scale:
    • Added format.
    • Added toJson, toJsonMap and fromJson.
  • Signal:
    • Added format and fromFormat.
    • Optimize values implementation for each format.
  • Propagation remove unused _layersPreviousGradientsDeltas.
  • Extension ListExtension:
  • Added asDoubles and asInts.

1.1.2 #

  • ActivationFunctionSigmoid:
    • Changed to use new faster dart:math.exp function.

1.1.1 #

  • ActivationFunction:
    • Added base class ActivationFunctionFloat32x4.
    • SIMD Optimization:
      • Improved performance in 2x.
      • ActivationFunctionLinear, ActivationFunctionSigmoid, ActivationFunctionSigmoidFast, ActivationFunctionSigmoidBoundedFast.
  • eneural_net_fast_math.dart:
    • exp: Improved performance and input range bounded to -87..87.
    • expFloat32x4: new SIMD Optimized Exponential function.
  • Chronometer:
    • Improved toString numbers.
    • Comparable.
    • operator +.
  • eneural_net_extensions:
    • Improved extensions.
    • Improved documentation.
  • Training:
    • Added logProgressEnabled.
  • intl: ^0.17.0

1.1.0 #

  • ActivationFunction:
    • Added field flatSpot for derivativeEntryWithFlatSpot().
    • Added ActivationFunctionLinear.
    • ActivationFunctionSigmoid: activation with bounds (-700 .. 700).
  • Improved collections and numeric extensions.
  • Improved DataStatistics and add CSV generator.
  • Signal:
    • Added SIMD related operations.
    • Added: computeSumSquaresMean, computeSumSquares, valuesAsDouble.
    • Set extra values (out of length range): setExtraValuesToZero, setExtraValuesToOne, setExtraValues.
    • Improved documentation.
  • Sample:
    • Input/Output statistics and proximity.
  • Added SamplesSet:
    • With per set computed defaultTargetGlobalError.
    • Automatic removeConflicts.
  • Training:
    • Split into Propagation and ParameterStrategy, allowing other algorithms.
    • Added Backpropagation with SIMD, smart learning rate and smart momentum.
    • Added iRprop+.
    • Added TrainingLogger.
    • Added selectInitialANN.
  • ANN:
    • Optional bias neuron.
    • Allow different ActivationFunction for each layer.

1.0.2 #

  • Expose fast math as an additional library.

1.0.1 #

  • README.md:
    • Improve text.
    • Improve activation function text.
    • Fix example.

1.0.0 #

  • Initial version.
  • Training algorithms: Backpropagation.
  • Activation functions: Sigmoid and approximation versions.
  • Fast math functions.
  • SIMD: Float32x4
33
likes
140
points
74
downloads

Publisher

unverified uploader

Weekly Downloads

AI Library to create efficient Artificial Neural Networks. Computation uses SIMD (Single Instruction Multiple Data) to improve performance.

Homepage

Documentation

API reference

License

Apache-2.0 (license)

Dependencies

collection, intl, swiss_knife

More

Packages that depend on eneural_net