eneural_net 1.0.0 eneural_net: ^1.0.0 copied to clipboard
AI Library to create efficient Artificial Neural Networks. Computation uses SIMD (Single Instruction Multiple Data) to improve performance.
example/eneural_net_example.dart
import 'package:eneural_net/eneural_net.dart';
import 'package:eneural_net/eneural_net_extensions.dart';
void main() {
// Type of scale to use to compute the ANN:
var scale = ScaleDouble.ZERO_TO_ONE;
// The samples to learn
var samples = SampleFloat32x4.toListFromString(
[
'0,0=0',
'1,0=1',
'0,1=1',
'1,1=0',
],
scale,
true, // Already normalized in the scale.
);
// The activation function to use in the ANN:
var activationFunction = ActivationFunctionSigmoid();
// The ANN using layers that can compute with Float32x4 (SIMD compatible type).
var ann = ANN(scale, LayerFloat32x4(2, activationFunction), [3],
LayerFloat32x4(1, activationFunction));
print(ann);
// Training algorithm:
var backpropagation = Backpropagation(ann);
var chronometer = Chronometer('Backpropagation').start();
// Train the ANN using Backpropagation until global error 0.01,
// with max epochs per training session of 1000000 and
// a max retry of 10 when a training session can't reach
// the target global error:
var achievedTargetError = backpropagation.trainUntilGlobalError(samples,
targetGlobalError: 0.01, maxEpochs: 1000000, maxRetries: 10);
chronometer.stop(operations: backpropagation.totalTrainingActivations);
// Compute the current global error of the ANN:
var globalError = ann.computeSamplesGlobalError(samples);
for (var i = 0; i < samples.length; ++i) {
var sample = samples[i];
var input = sample.input;
var expected = sample.output;
// Activate the sample input:
ann.activate(input);
// The current output of the ANN (after activation):
var output = ann.output;
print('- $i> $input -> $output ($expected) > error: ${output - expected}');
}
print('globalError: $globalError');
print('achievedTargetError: $achievedTargetError');
print(chronometer);
}