apple_vision_face_mesh 0.0.1 apple_vision_face_mesh: ^0.0.1 copied to clipboard
A Flutter plugin to use Apple Vision Face Detection to detect faces in an image or video stream, identify key facial features, and get the contours of detected faces.
apple_vision_face_mesh #
Apple Vision Face Mesh is a Flutter plugin that enables Flutter apps to use tensor flows Face Mesh.
- This plugin is not sponsor or maintained by Apple. The authors are developers who wanted to make a similar plugin to Google's ml kit for macos.
Requirements #
MacOS
- Minimum osx Deployment Target: 11.0
- Xcode 13 or newer
- Swift 5
- ML Kit only supports 64-bit architectures (x86_64 and arm64).
iOS
- Minimum ios Deployment Target: 13.0
- Xcode 13 or newer
- Swift 5
- ML Kit only supports 64-bit architectures (x86_64 and arm64).
Getting Started #
You need to first import 'package:apple_vision/apple_vision.dart';
final GlobalKey cameraKey = GlobalKey(debugLabel: "cameraKey");
AppleVisionFaceMeshController visionController = AppleVisionFaceMeshController();
InsertCamera camera = InsertCamera();
String? deviceId;
bool loading = true;
Size imageSize = const Size(640,640*9/16);
List<FaceMesh>? faceData;
late double deviceWidth;
late double deviceHeight;
@override
void initState() {
camera.setupCameras().then((value){
setState(() {
loading = false;
});
camera.startLiveFeed((InputImage i)async {
if(i.metadata?.size != null){
imageSize = i.metadata!.size;
}
if(mounted) {
Uint8List? image = i.bytes;
await visionController.processImage(image!, i.metadata!.size).then((data){
faceData = data;
setState(() {
});
});
}
});
});
super.initState();
}
@override
void dispose() {
camera.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
deviceWidth = MediaQuery.of(context).size.width;
deviceHeight = MediaQuery.of(context).size.height;
return Stack(
children:<Widget>[
SizedBox(
width: imageSize.width,
height: imageSize.height,
child: loading?Container():CameraSetup(camera: camera, size: imageSize)
),
]+showPoints()
);
}
List<Widget> showPoints(){
if(faceData == null || faceData!.isEmpty) return[];
List<Widget> widgets = [];
for(int k = 0; k < faceData!.length;k++){
List<FacePoint> points = faceData![k].mesh;
for(int j = 0; j < points.length;j++){
//print(min.width);
widgets.add(
Positioned(
left: points[j].x*imageSize.aspectRatio+faceData![0].image.origin.x+20,
bottom: imageSize.height/2+90-points[j].y*imageSize.aspectRatio+faceData![0].image.origin.y,
child: Container(
width: 2,
height: 2,
decoration: BoxDecoration(
color: Colors.white,
borderRadius: BorderRadius.circular(1)
),
)
)
);
}
}
return widgets;
}
Widget loadingWidget(){
return Container(
width: deviceWidth,
height: deviceHeight,
color: Theme.of(context).canvasColor,
alignment: Alignment.center,
child: const CircularProgressIndicator(color: Colors.blue)
);
}
Example #
Find the example for this API here.
Contributing #
Contributions are welcome. In case of any problems look at existing issues, if you cannot find anything related to your problem then open an issue. Create an issue before opening a pull request for non trivial fixes. In case of trivial fixes open a pull request directly.