vertex_ai 0.0.2 vertex_ai: ^0.0.2 copied to clipboard
Vertex AI API client.
Vertex AI API Client #
Dart client for the Vertex AI API.
Features #
Generative AI #
Generative AI
support on Vertex AI (also known as genai
) gives you access to Google's large
generative AI models so you can use in your AI-powered applications.
Authentication #
The VertexAIGenAIClient
delegates authentication to the
googleapis_auth package.
To create an instance of VertexAIGenAIClient
you need to provide an
AuthClient
instance.
There are several ways to obtain an AuthClient
depending on your use case.
Check out the googleapis_auth
package documentation for more details.
Example using a service account JSON:
final serviceAccountCredentials = ServiceAccountCredentials.fromJson(
json.decode(serviceAccountJson),
);
final authClient = await clientViaServiceAccount(
serviceAccountCredentials,
[VertexAIGenAIClient.cloudPlatformScope],
);
final vertexAi = VertexAIGenAIClient(
authHttpClient: authClient,
project: 'your-project-id',
);
The service account should have the following permission:
aiplatform.endpoints.predict
The requiredOAuth2 scope is:
https://www.googleapis.com/auth/cloud-platform
(you can use the constantVertexAIGenAIClient.cloudPlatformScope
)
Text models #
PaLM API for text is fine-tuned for language tasks such as classification, summarization, and entity extraction.
final res = await vertexAi.text.predict(
prompt: 'What is the purpose of life?',
);
Chat models #
PaLM API for chat is fine-tuned for multi-turn chat, where the model keeps track of previous messages in the chat and uses it as context for generating new responses.
final res = await vertexAi.chat.predict(
context: 'I want you to act as a Socrat.',
messages: const [
VertexAIChatModelMessage(
author: 'USER',
content: 'Is justice neccessary in a society?',
),
],
);
Text embeddings #
The Text Embedding API generates vector embeddings for input text. You can use embeddings for tasks like semantic search, recommendation, classification, and outlier detection.
final res = await vertexAi.textEmbeddings.predict(
content: ['The only true wisdom is in knowing you know nothing.'],
);
Matching Engine #
Vertex AI Matching Engine provides the industry's leading high-scale low latency vector database. These vector databases are commonly referred to as vector similarity-matching or an approximate nearest neighbor (ANN) service.
Matching Engine provides tooling to build use cases that match semantically similar items. More specifically, given a query item, Matching Engine finds the most semantically similar items to it from a large corpus of candidate items.
Authentication #
The VertexAIMatchingEngineClient
delegates authentication to the
googleapis_auth package.
To create an instance of VertexAIMatchingEngineClient
you need to provide
an AuthClient
instance.
There are several ways to obtain an AuthClient
depending on your use case.
Check out the googleapis_auth
package documentation for more details.
Example using a service account JSON:
final serviceAccountCredentials = ServiceAccountCredentials.fromJson(
json.decode(serviceAccountJson),
);
final authClient = await clientViaServiceAccount(
serviceAccountCredentials,
[VertexAIGenAIClient.cloudPlatformScope],
);
final vertexAi = VertexAIMatchingEngineClient(
authHttpClient: authClient,
project: 'your-project-id',
location: 'europe-west1',
);
To be able to create and manage indexes and index endpoints, the service account should have the following permissions:
aiplatform.indexes.create
aiplatform.indexes.get
aiplatform.indexes.list
aiplatform.indexes.update
aiplatform.indexes.delete
aiplatform.indexEndpoints.create
aiplatform.indexEndpoints.get
aiplatform.indexEndpoints.list
aiplatform.indexEndpoints.update
aiplatform.indexEndpoints.delete
aiplatform.indexEndpoints.deploy
aiplatform.indexEndpoints.undeploy
If you just want to query an index endpoint, the service account only needs:
aiplatform.indexEndpoints.queryVectors
The requiredOAuth2 scope is:
https://www.googleapis.com/auth/cloud-platform
(you can use the constantVertexAIMatchingEngineClient.cloudPlatformScope
) See: https://cloud.google.com/vertex-ai/docs/generative-ai/access-control
Create an index #
- Generate embeddings for your data and save them to a file (see supported formats here).
- Create a Cloud Storage bucket and upload the embeddings file.
- Create the index:
final operation = await marchingEngine.indexes.create(
displayName: 'test-index',
description: 'This is a test index',
metadata: const VertexAINearestNeighborSearch(
contentsDeltaUri: 'gs://bucket-name/path-to-index-dir',
config: VertexAINearestNeighborSearchConfig(
dimensions: 768,
algorithmConfig: VertexAITreeAhAlgorithmConfig(),
),
),
);
To check the status of the operation:
final operation = await marchingEngine.indexes.operations.get(
name: operation.name,
);
print(operation.done);
Get index information #
final index = await marchingEngine.indexes.get(id: '5086059315115065344');
You can also list all indexes:
final indexes = await marchingEngine.indexes.list();
Update an index #
final res = await marchingEngine.indexes.update(
id: '5086059315115065344',
metadata: const VertexAIIndexRequestMetadata(
contentsDeltaUri: 'gs://bucket-name/path-to-index-dir',
isCompleteOverwrite: true,
),
);
Create an index endpoint #
final operation = await marchingEngine.indexEndpoints.create(
displayName: 'test-index-endpoint',
description: 'This is a test index endpoint',
publicEndpointEnabled: true,
);
To check the status of the operation:
final operation = await marchingEngine.indexEndpoints.operations.get(
name: operation.name,
);
print(operation.done);
Deploy an index to an index endpoint #
final operation = await marchingEngine.indexEndpoints.deployIndex(
indexId: '5086059315115065344',
indexEndpointId: '8572232454792807200',
deployedIndexId: 'deployment1',
deployedIndexDisplayName: 'test-deployed-index',
);
You can check the status of the operation as shown above.
If you want to enable autoscaling:
final operation = await marchingEngine.indexEndpoints.deployIndex(
indexId: '5086059315115065344',
indexEndpointId: '8572232454792807200',
deployedIndexId: 'deployment1',
deployedIndexDisplayName: 'test-deployed-index',
automaticResources: const VertexAIAutomaticResources(
minReplicaCount: 2,
maxReplicaCount: 10,
),
);
Get index endpoint information #
final ie = await marchingEngine.indexEndpoints.get(id: '8572232454792807200');
You can also list all index endpoints:
final indexEndpoints = await marchingEngine.indexEndpoints.list();
Mutate index endpoint #
final operation = await marchingEngine.indexEndpoints.mutateDeployedIndex(
indexEndpointId: '8572232454792807200',
deployedIndexId: 'deployment1',
automaticResources: const VertexAIAutomaticResources(
minReplicaCount: 2,
maxReplicaCount: 20,
),
);
Undeploy an index from an index endpoint #
final operation = await marchingEngine.indexEndpoints.undeployIndex(
indexEndpointId: '8572232454792807200',
deployedIndexId: 'deployment1',
);
Delete an index endpoint #
final operation = await marchingEngine.indexEndpoints.delete(
id: '8572232454792807200',
);
Delete an index #
final operation = await marchingEngine.indexes.delete(
id: '5086059315115065344',
);
Query an index using the index endpoint #
Once you've created the index, you can run queries to get its nearest neighbors.
Mind that you will need a different VertexAIMatchingEngineClient
for
calling this method, as the public query endpoint has a different rootUrl
than the rest of the API (e.g. https://xxxxxxxxxx.europe-west1-xxxxxxxxxxxx.vdb.vertexai.goog).
Check the VertexAIIndexEndpoint.publicEndpointDomainName
of your index
endpoint by calling VertexAIMatchingEngineClient.indexEndpoints.get
. Then
create a new client setting the [VertexAIMatchingEngineClient.rootUrl] to that
value (mind that you need to add https://
to the beginning of the domain
name).
final machineEngineQuery = VertexAIMatchingEngineClient(
authHttpClient: authClient,
project: Platform.environment['VERTEX_AI_PROJECT_ID']!,
rootUrl:
'https://1451028333.europe-west1-706285145444.vdb.vertexai.goog/',
);
final res = await machineEngineQuery.indexEndpoints.findNeighbors(
indexEndpointId: '8572232454792807200',
deployedIndexId: 'deployment1',
queries: const [
VertexAIFindNeighborsRequestQuery(
datapoint: VertexAIIndexDatapoint(
datapointId: 'your-datapoint-id',
featureVector: [-0.0024800552055239677, 0.011974085122346878, ...],
),
neighborCount: 3,
),
],
);
Docs: https://cloud.google.com/vertex-ai/docs/matching-engine/query-index-public-endpoint
License #
Vertex AI API Client is licensed under the MIT License.