toon_dart 1.0.0+4 copy "toon_dart: ^1.0.0+4" to clipboard
toon_dart: ^1.0.0+4 copied to clipboard

A compact, human-readable data serialization format similar to JSON but designed for configuration files and structured data.

TOON logo with step‑by‑step guide

Token-Oriented Object Notation (TOON) #

Token-Oriented Object Notation is a compact, human-readable format designed for passing structured data to Large Language Models with significantly reduced token usage. It's intended for LLM input, not output.

TOON's sweet spot is uniform arrays of objects – multiple fields per row, same structure across items. It borrows YAML's indentation-based structure for nested objects and CSV's tabular format for uniform data rows, then optimizes both for token efficiency in LLM contexts. For deeply nested or non-uniform data, JSON may be more efficient.

Tip

Think of TOON as a translation layer: use JSON programmatically, convert to TOON for LLM input.

Why TOON? #

AI is becoming cheaper and more accessible, but larger context windows allow for larger data inputs as well. LLM tokens still cost money – and standard JSON is verbose and token-expensive:

{
  "users": [
    { "id": 1, "name": "Alice", "role": "admin" },
    { "id": 2, "name": "Bob", "role": "user" }
  ]
}

TOON conveys the same information with fewer tokens:

users[2]{id,name,role}:
  1,Alice,admin
  2,Bob,user
Another reason

xkcd: Standards

Key Features #

  • 💸 Token-efficient: typically 30–60% fewer tokens than JSON
  • 🤿 LLM-friendly guardrails: explicit lengths and field lists help models validate output
  • 🍱 Minimal syntax: removes redundant punctuation (braces, brackets, most quotes)
  • 📐 Indentation-based structure: replaces braces with whitespace for better readability
  • 🧺 Tabular arrays: declare keys once, then stream rows without repetition

Benchmarks #

Tip

Try the interactive Format Tokenization Playground to compare token usage across CSV, JSON, YAML, and TOON with your own data.

The benchmarks test datasets that favor TOON's strengths (uniform tabular data). Real-world performance depends heavily on your data structure. For info about benchmarking https://github.com/johannschopplich/toon

Token Efficiency #

⭐ GitHub Repositories       ██████████████░░░░░░░░░░░    8,745 tokens
                             vs JSON (-42.3%)           15,145
                             vs JSON compact (-23.7%)   11,455
                             vs YAML (-33.4%)           13,129
                             vs XML (-48.8%)            17,095

📈 Daily Analytics           ██████████░░░░░░░░░░░░░░░    4,507 tokens
                             vs JSON (-58.9%)           10,977
                             vs JSON compact (-35.7%)    7,013
                             vs YAML (-48.8%)            8,810
                             vs XML (-65.7%)            13,128

🛒 E-Commerce Order          ████████████████░░░░░░░░░      166 tokens
                             vs JSON (-35.4%)              257
                             vs JSON compact (-2.9%)       171
                             vs YAML (-15.7%)              197
                             vs XML (-38.7%)               271

─────────────────────────────────────────────────────────────────────
Total                        ██████████████░░░░░░░░░░░   13,418 tokens
                             vs JSON (-49.1%)           26,379
                             vs JSON compact (-28.0%)   18,639
                             vs YAML (-39.4%)           22,136
                             vs XML (-56.0%)            30,494
View detailed examples

⭐ GitHub Repositories

Configuration: Top 100 GitHub repositories with stars, forks, and metadata

Savings: 6,400 tokens (42.3% reduction vs JSON)

JSON (15,145 tokens):

{
  "repositories": [
    {
      "id": 28457823,
      "name": "freeCodeCamp",
      "repo": "freeCodeCamp/freeCodeCamp",
      "description": "freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…",
      "createdAt": "2014-12-24T17:49:19Z",
      "updatedAt": "2025-10-28T11:58:08Z",
      "pushedAt": "2025-10-28T10:17:16Z",
      "stars": 430886,
      "watchers": 8583,
      "forks": 42146,
      "defaultBranch": "main"
    },
    {
      "id": 132750724,
      "name": "build-your-own-x",
      "repo": "codecrafters-io/build-your-own-x",
      "description": "Master programming by recreating your favorite technologies from scratch.",
      "createdAt": "2018-05-09T12:03:18Z",
      "updatedAt": "2025-10-28T12:37:11Z",
      "pushedAt": "2025-10-10T18:45:01Z",
      "stars": 430877,
      "watchers": 6332,
      "forks": 40453,
      "defaultBranch": "master"
    },
    {
      "id": 21737465,
      "name": "awesome",
      "repo": "sindresorhus/awesome",
      "description": "😎 Awesome lists about all kinds of interesting topics",
      "createdAt": "2014-07-11T13:42:37Z",
      "updatedAt": "2025-10-28T12:40:21Z",
      "pushedAt": "2025-10-27T17:57:31Z",
      "stars": 410052,
      "watchers": 8017,
      "forks": 32029,
      "defaultBranch": "main"
    }
  ]
}

TOON (8,745 tokens):

repositories[3]{id,name,repo,description,createdAt,updatedAt,pushedAt,stars,watchers,forks,defaultBranch}:
  28457823,freeCodeCamp,freeCodeCamp/freeCodeCamp,"freeCodeCamp.org's open-source codebase and curriculum. Learn math, programming,…","2014-12-24T17:49:19Z","2025-10-28T11:58:08Z","2025-10-28T10:17:16Z",430886,8583,42146,main
  132750724,build-your-own-x,codecrafters-io/build-your-own-x,Master programming by recreating your favorite technologies from scratch.,"2018-05-09T12:03:18Z","2025-10-28T12:37:11Z","2025-10-10T18:45:01Z",430877,6332,40453,master
  21737465,awesome,sindresorhus/awesome,😎 Awesome lists about all kinds of interesting topics,"2014-07-11T13:42:37Z","2025-10-28T12:40:21Z","2025-10-27T17:57:31Z",410052,8017,32029,main

📈 Daily Analytics

Configuration: 180 days of web metrics (views, clicks, conversions, revenue)

Savings: 6,470 tokens (58.9% reduction vs JSON)

JSON (10,977 tokens):

{
  "metrics": [
    {
      "date": "2025-01-01",
      "views": 6890,
      "clicks": 401,
      "conversions": 23,
      "revenue": 6015.59,
      "bounceRate": 0.63
    },
    {
      "date": "2025-01-02",
      "views": 6940,
      "clicks": 323,
      "conversions": 37,
      "revenue": 9086.44,
      "bounceRate": 0.36
    },
    {
      "date": "2025-01-03",
      "views": 4390,
      "clicks": 346,
      "conversions": 26,
      "revenue": 6360.75,
      "bounceRate": 0.48
    },
    {
      "date": "2025-01-04",
      "views": 3429,
      "clicks": 231,
      "conversions": 13,
      "revenue": 2360.96,
      "bounceRate": 0.65
    },
    {
      "date": "2025-01-05",
      "views": 5804,
      "clicks": 186,
      "conversions": 22,
      "revenue": 2535.96,
      "bounceRate": 0.37
    }
  ]
}

TOON (4,507 tokens):

metrics[5]{date,views,clicks,conversions,revenue,bounceRate}:
  2025-01-01,6890,401,23,6015.59,0.63
  2025-01-02,6940,323,37,9086.44,0.36
  2025-01-03,4390,346,26,6360.75,0.48
  2025-01-04,3429,231,13,2360.96,0.65
  2025-01-05,5804,186,22,2535.96,0.37

Note

Token savings are measured against formatted JSON (2-space indentation) as the primary baseline. Additional comparisons include compact JSON (minified), YAML, and XML to provide a comprehensive view across common data formats. Measured with gpt-tokenizer using o200k_base encoding (GPT-5 tokenizer). Actual savings vary by model and tokenizer.

Retrieval Accuracy #

Accuracy across 4 LLMs on 154 data retrieval questions:

gpt-5-nano
→ TOON           ███████████████████░    96.1% (148/154)
  CSV            ██████████████████░░    91.6% (141/154)
  YAML           ██████████████████░░    91.6% (141/154)
  JSON compact   ██████████████████░░    91.6% (141/154)
  XML            █████████████████░░░    87.0% (134/154)
  JSON           █████████████████░░░    86.4% (133/154)

claude-haiku-4-5-20251001
  JSON           ██████████░░░░░░░░░░    50.0% (77/154)
  YAML           ██████████░░░░░░░░░░    49.4% (76/154)
→ TOON           ██████████░░░░░░░░░░    48.7% (75/154)
  XML            ██████████░░░░░░░░░░    48.1% (74/154)
  CSV            █████████░░░░░░░░░░░    47.4% (73/154)
  JSON compact   █████████░░░░░░░░░░░    44.2% (68/154)

gemini-2.5-flash
  CSV            ██████████████████░░    87.7% (135/154)
  XML            ██████████████████░░    87.7% (135/154)
→ TOON           █████████████████░░░    86.4% (133/154)
  YAML           ████████████████░░░░    79.9% (123/154)
  JSON compact   ████████████████░░░░    79.9% (123/154)
  JSON           ███████████████░░░░░    76.6% (118/154)

grok-4-fast-non-reasoning
→ TOON           ██████████░░░░░░░░░░    49.4% (76/154)
  JSON           ██████████░░░░░░░░░░    48.7% (75/154)
  XML            █████████░░░░░░░░░░░    46.1% (71/154)
  YAML           █████████░░░░░░░░░░░    46.1% (71/154)
  JSON compact   █████████░░░░░░░░░░░    45.5% (70/154)
  CSV            █████████░░░░░░░░░░░    44.2% (68/154)

Key tradeoff: TOON achieves 70.1% accuracy (vs JSON's 65.4%) while using 46.3% fewer tokens on these datasets.

Performance by dataset and model

Performance by Dataset

Uniform employee records (TOON optimal format)
Format Accuracy Tokens Correct/Total
csv 65.5% 2,337 131/200
toon 67.5% 2,483 135/200
json-compact 65.5% 3,943 131/200
yaml 68.5% 4,969 137/200
xml 69.5% 7,314 139/200
json-pretty 64.5% 6,347 129/200
E-commerce orders with nested structures
Format Accuracy Tokens Correct/Total
toon 78.8% 5,967 126/160
csv 76.3% 6,735 122/160
json-compact 70.6% 5,962 113/160
yaml 72.5% 7,328 116/160
json-pretty 76.9% 9,694 123/160
xml 73.1% 10,992 117/160
Time-series analytics data
Format Accuracy Tokens Correct/Total
toon 68.4% 1,515 93/136
csv 65.4% 1,393 89/136
json-compact 64.7% 2,341 88/136
yaml 66.2% 2,938 90/136
json-pretty 64.7% 3,665 88/136
xml 66.9% 4,376 91/136
Top 100 GitHub repositories
Format Accuracy Tokens Correct/Total
toon 65.0% 8,745 78/120
csv 62.5% 8,513 75/120
json-compact 58.3% 11,455 70/120
yaml 56.7% 13,129 68/120
xml 55.8% 17,095 67/120
json-pretty 52.5% 15,145 63/120

Performance by Model

gpt-5-nano
Format Accuracy Correct/Total
toon 96.1% 148/154
csv 91.6% 141/154
yaml 91.6% 141/154
json-compact 91.6% 141/154
xml 87.0% 134/154
json-pretty 86.4% 133/154
claude-haiku-4-5-20251001
Format Accuracy Correct/Total
json-pretty 50.0% 77/154
yaml 49.4% 76/154
toon 48.7% 75/154
xml 48.1% 74/154
csv 47.4% 73/154
json-compact 44.2% 68/154
gemini-2.5-flash
Format Accuracy Correct/Total
csv 87.7% 135/154
xml 87.7% 135/154
toon 86.4% 133/154
yaml 79.9% 123/154
json-compact 79.9% 123/154
json-pretty 76.6% 118/154
grok-4-fast-non-reasoning
Format Accuracy Correct/Total
toon 49.4% 76/154
json-pretty 48.7% 75/154
xml 46.1% 71/154
yaml 46.1% 71/154
json-compact 45.5% 70/154
csv 44.2% 68/154
How the benchmark works

What's Being Measured

This benchmark tests LLM comprehension and data retrieval accuracy across different input formats. Each LLM receives formatted data and must answer questions about it (this does not test model's ability to generate TOON output).

Datasets Tested

Four datasets designed to test different structural patterns (all contain arrays of uniform objects, TOON's optimal format):

  1. Tabular (100 employee records): Uniform objects with identical fields – optimal for TOON's tabular format.
  2. Nested (50 e-commerce orders): Complex structures with nested customer objects and item arrays.
  3. Analytics (60 days of metrics): Time-series data with dates and numeric values.
  4. GitHub (100 repositories): Real-world data from top GitHub repos by stars.

Question Types

154 questions are generated dynamically across three categories:

  • Field retrieval (40%): Direct value lookups or values that can be read straight off a record (including booleans and simple counts such as array lengths)

    • Example: "What is Alice's salary?" → 75000
    • Example: "How many items are in order ORD-0042?" → 3
    • Example: "What is the customer name for order ORD-0042?" → John Doe
  • Aggregation (32%): Dataset-level totals and averages plus single-condition filters (counts, sums, min/max comparisons)

    • Example: "How many employees work in Engineering?" → 17
    • Example: "What is the total revenue across all orders?" → 45123.50
    • Example: "How many employees have salary > 80000?" → 23
  • Filtering (28%): Multi-condition queries requiring compound logic (AND constraints across fields)

    • Example: "How many employees in Sales have salary > 80000?" → 5
    • Example: "How many active employees have more than 10 years of experience?" → 8

Evaluation Process

  1. Format conversion: Each dataset is converted to all 6 formats (TOON, CSV, XML, YAML, JSON, JSON compact).
  2. Query LLM: Each model receives formatted data + question in a prompt and extracts the answer.
  3. Validate with LLM-as-judge: gpt-5-nano validates if the answer is semantically correct (e.g., 50000 = $50,000, Engineering = engineering, 2025-01-01 = January 1, 2025).

Models & Configuration

  • Models tested: gpt-5-nano, claude-haiku-4-5-20251001, gemini-2.5-flash, grok-4-fast-non-reasoning
  • Token counting: Using gpt-tokenizer with o200k_base encoding (GPT-5 tokenizer)
  • Temperature: Not set (models use their defaults)
  • Total evaluations: 154 questions × 6 formats × 4 models = 3,696 LLM calls

Installation #

Add this to your pubspec.yaml:

dependencies:
  toon: ^1.0.0

Then run:

dart pub get

CLI #

Command-line tool for converting between JSON and TOON formats.

Usage #

dart run toon <command> [input]

Commands #

Command Description
encode Encode JSON from stdin to TOON format
decode Decode TOON format from stdin to JSON format
<file> Process file (auto-detect format based on extension)

Examples #

# Encode JSON from stdin
echo '{"name": "Alice", "age": 30}' | dart run toon encode

# Decode TOON from stdin
echo "name: Alice\nage: 30" | dart run toon decode

# Process files (auto-detect based on extension)
dart run toon data.json    # .json → encode to TOON
dart run toon data.toon    # .toon → decode to JSON

Quick Start #

import 'package:toon_dart/toon_dart.dart';

void main() {
  final data = {
    'user': {
      'id': 123,
      'name': 'Ada',
      'tags': ['reading', 'gaming'],
      'active': true,
      'preferences': []
    }
  };

  print(toonEncode(data));
}

Output:

user:
  id: 123
  name: Ada
  tags[2]: reading,gaming
  active: true
  preferences[0]:

Format Overview #

Note

For precise formatting rules and implementation details, see the SPEC.md.

Objects #

Simple objects with primitive values:

toonEncode({
  'id': 123,
  'name': 'Ada',
  'active': true
});
id: 123
name: Ada
active: true

Nested objects:

toonEncode({
  'user': {
    'id': 123,
    'name': 'Ada'
  }
});
user:
  id: 123
  name: Ada

Arrays #

Tip

TOON includes the array length in brackets (e.g., items[3]). When using comma delimiters (default), the delimiter is implicit. When using tab or pipe delimiters, the delimiter is explicitly shown in the header (e.g., tags[2|] or [2 ]). This encoding helps LLMs identify the delimiter and track the number of elements, reducing errors when generating or validating structured output.

Primitive Arrays (Inline)

toonEncode({
  'tags': ['admin', 'ops', 'dev']
});
tags[3]: admin,ops,dev

Arrays of Objects (Tabular)

When all objects share the same primitive fields, TOON uses an efficient tabular format:

toonEncode({
  'items': [
    {'sku': 'A1', 'qty': 2, 'price': 9.99},
    {'sku': 'B2', 'qty': 1, 'price': 14.5}
  ]
});
items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

Tabular formatting applies recursively: nested arrays of objects (whether as object properties or inside list items) also use tabular format if they meet the same requirements.

toonEncode({
  'items': [
    {
      'users': [
        {'id': 1, 'name': 'Ada'},
        {'id': 2, 'name': 'Bob'}
      ],
      'status': 'active'
    }
  ]
});
items[1]:
  - users[2]{id,name}:
    1,Ada
    2,Bob
    status: active

Mixed and Non-Uniform Arrays

Arrays that don't meet the tabular requirements use list format:

items[3]:
  - 1
  - a: 1
  - text

When objects appear in list format, the first field is placed on the hyphen line:

items[2]:
  - id: 1
    name: First
  - id: 2
    name: Second
    extra: true

Note

Nested array indentation: When the first field of a list item is an array (primitive, tabular, or nested), its contents are indented two spaces under the header line, and subsequent fields of the same object appear at that same indentation level. This remains unambiguous because list items begin with "- ", tabular arrays declare a fixed row count in their header, and object fields contain ":".

Arrays of Arrays

When you have arrays containing primitive inner arrays:

toonEncode({
  'pairs': [
    [1, 2],
    [3, 4]
  ]
});
pairs[2]:
  - [2]: 1,2
  - [2]: 3,4

Empty Arrays and Objects

Empty containers have special representations:

toonEncode({'items': []}); // items[0]:
toonEncode([]); // [0]:
toonEncode({}); // (empty output)
toonEncode({'config': {}}); // config:

Quoting Rules #

TOON quotes strings only when necessary to maximize token efficiency:

  • Inner spaces are allowed; leading or trailing spaces force quotes.
  • Unicode and emoji are safe unquoted.
  • Quotes and control characters are escaped with backslash.

Note

When using alternative delimiters (tab or pipe), the quoting rules adapt automatically. Strings containing the active delimiter will be quoted, while other delimiters remain safe.

Object Keys and Field Names

Keys are unquoted if they match the identifier pattern: start with a letter or underscore, followed by letters, digits, underscores, or dots (e.g., id, userName, user_name, user.name, _private). All other keys must be quoted (e.g., "user name", "order-id", "123", "order:id", "").

String Values

String values are quoted when any of the following is true:

Condition Examples
Empty string ""
Leading or trailing spaces " padded ", " "
Contains active delimiter, colon, quote, backslash, or control chars "a,b" (comma), "a\tb" (tab), "a|b" (pipe), "a:b", "say \"hi\"", "C:\\Users", "line1\\nline2"
Looks like boolean/number/null "true", "false", "null", "42", "-3.14", "1e-6", "05"
Starts with "- " (list-like) "- item"
Looks like structural token "[5]", "{key}", "[3]: x,y"

Examples of unquoted strings: Unicode and emoji are safe (hello 👋 world), as are strings with inner spaces (hello world).

Important

Delimiter-aware quoting: Unquoted strings never contain : or the active delimiter. This makes TOON reliably parseable with simple heuristics: split key/value on first : , and split array values on the delimiter declared in the array header. When using tab or pipe delimiters, commas don't need quoting – only the active delimiter triggers quoting for both array values and object values.

Type Conversions #

Some non-JSON types are automatically normalized for LLM-safe output:

Input Output
num (finite) Decimal form, no scientific notation (e.g., -0.00, 1e61000000)
num (NaN, ±Infinity) null
BigInt If within safe integer range: converted to int. Otherwise: quoted decimal string
DateTime ISO string in quotes (e.g., "2025-01-01T00:00:00.000Z")

API #

toonEncode(value, {options}) #

Converts any JSON-serializable value to TOON format.

Parameters:

  • value – Any JSON-serializable value (object, array, primitive, or nested structure). Non-JSON-serializable values (non-finite numbers) are converted to null. Dates are converted to ISO strings, and BigInts are emitted as decimal integers (no quotes).
  • options – Optional encoding options:
    • indent – Number of spaces per indentation level (default: 2)
    • delimiter – Delimiter for array values and tabular rows (default: ',')
    • lengthMarker – Optional marker to prefix array lengths (default: false)

Returns:

A TOON-formatted string with no trailing newline or spaces.

Example:

import 'package:toon_dart/toon_dart.dart';

final items = [
  {'sku': 'A1', 'qty': 2, 'price': 9.99},
  {'sku': 'B2', 'qty': 1, 'price': 14.5}
];

toonEncode({'items': items});

Output:

items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5

Delimiter Options

The delimiter option allows you to choose between comma (default), tab, or pipe delimiters for array values and tabular rows. Alternative delimiters can provide additional token savings in specific contexts.

Tab Delimiter (\t)

Using tab delimiters instead of commas can reduce token count further, especially for tabular data:

final data = {
  'items': [
    {'sku': 'A1', 'name': 'Widget', 'qty': 2, 'price': 9.99},
    {'sku': 'B2', 'name': 'Gadget', 'qty': 1, 'price': 14.5}
  ]
};

toonEncode(data, options: EncodeOptions(delimiter: '\t'));

Output:

items[2	]{sku	name	qty	price}:
  A1	Widget	2	9.99
  B2	Gadget	1	14.5

Benefits:

  • Tabs are single characters and often tokenize more efficiently than commas.
  • Tabs rarely appear in natural text, reducing the need for quote-escaping.
  • The delimiter is explicitly encoded in the array header, making it self-descriptive.

Considerations:

  • Some terminals and editors may collapse or expand tabs visually.
  • String values containing tabs will still require quoting.
Pipe Delimiter (|)

Pipe delimiters offer a middle ground between commas and tabs:

toonEncode(data, options: EncodeOptions(delimiter: '|'));

Output:

items[2|]{sku|name|qty|price}:
  A1|Widget|2|9.99
  B2|Gadget|1|14.5

Length Marker Option

The lengthMarker option adds an optional hash (#) prefix to array lengths to emphasize that the bracketed value represents a count, not an index:

final data = {
  'tags': ['reading', 'gaming', 'coding'],
  'items': [
    {'sku': 'A1', 'qty': 2, 'price': 9.99},
    {'sku': 'B2', 'qty': 1, 'price': 14.5},
  ],
};

toonEncode(data, options: EncodeOptions(lengthMarker: '#'));
// tags[#3]: reading,gaming,coding
// items[#2]{sku,qty,price}:
//   A1,2,9.99
//   B2,1,14.5

// Works with custom delimiters
toonEncode(data, options: EncodeOptions(lengthMarker: '#', delimiter: '|'));
// tags[#3|]: reading|gaming|coding
// items[#2|]{sku|qty|price}:
//   A1|2|9.99
//   B2|1|14.5

toonDecode(input, {options}) #

Converts a TOON-formatted string back to Dart values.

Parameters:

  • input – A TOON-formatted string to parse
  • options – Optional decoding options:
    • indent – Expected number of spaces per indentation level (default: 2)
    • strict – Enable strict validation (default: true)

Returns:

A Dart value (object, array, or primitive) representing the parsed TOON data.

Example:

import 'package:toon_dart/toon_dart.dart';

final toon = '''
items[2]{sku,qty,price}:
  A1,2,9.99
  B2,1,14.5
''';

final data = toonDecode(toon);
// {
//   'items': [
//     {'sku': 'A1', 'qty': 2, 'price': 9.99},
//     {'sku': 'B2', 'qty': 1, 'price': 14.5}
//   ]
// }

Strict Mode:

By default, the decoder validates input strictly:

  • Invalid escape sequences: Throws on "\x", unterminated strings.
  • Syntax errors: Throws on missing colons, malformed headers.
  • Array length mismatches: Throws when declared length doesn't match actual count.
  • Delimiter mismatches: Throws when row delimiters don't match header.

Notes and Limitations #

  • Format familiarity and structure matter as much as token count. TOON's tabular format requires arrays of objects with identical keys and primitive values only. When this doesn't hold (due to mixed types, non-uniform objects, or nested structures), TOON switches to list format where JSON can be more efficient at scale.
    • TOON excels at: Uniform arrays of objects (same fields, primitive values), especially large datasets with consistent structure.
    • JSON is better for: Non-uniform data, deeply nested structures, and objects with varying field sets.
  • Token counts vary by tokenizer and model. Benchmarks use a GPT-style tokenizer (cl100k/o200k); actual savings will differ with other models (e.g., SentencePiece).
  • TOON is designed for LLM input where human readability and token efficiency matter. It's not a drop-in replacement for JSON in APIs or storage.

Using TOON in LLM Prompts #

TOON works best when you show the format instead of describing it. The structure is self-documenting – models parse it naturally once they see the pattern.

Sending TOON to LLMs (Input) #

Wrap your encoded data in a fenced code block (label it ```toon for clarity). The indentation and headers are usually enough – models treat it like familiar YAML or CSV. The explicit length markers ([N]) and field headers ({field1,field2}) help the model track structure, especially for large tables.

Generating TOON from LLMs (Output) #

For output, be more explicit. When you want the model to generate TOON:

  • Show the expected header (users[N]{id,name,role}:). The model fills rows instead of repeating keys, reducing generation errors.
  • State the rules: 2-space indent, no trailing spaces, [N] matches row count.

Here's a prompt that works for both reading and generating:

Data is in TOON format (2-space indent, arrays show length and fields).

```toon
users[3]{id,name,role,lastLogin}:
  1,Alice,admin,2025-01-15T10:30:00Z
  2,Bob,user,2025-01-14T15:22:00Z
  3,Charlie,user,2025-01-13T09:45:00Z
```

Task: Return only users with role "user" as TOON. Use the same header. Set [N] to match the row count. Output only the code block.

Tip

For large uniform tables, use encode(data, { delimiter: '\t' }) and tell the model "fields are tab-separated." Tabs often tokenize better than commas and reduce the need for quote-escaping.

Quick Reference #

// Object
{ id: 1, name: 'Ada' }          → id: 1
                                  name: Ada

// Nested object
{ user: { id: 1 } }             → user:
                                    id: 1

// Primitive array (inline)
{ tags: ['foo', 'bar'] }        → tags[2]: foo,bar

// Tabular array (uniform objects)
{ items: [                      → items[2]{id,qty}:
  { id: 1, qty: 5 },                1,5
  { id: 2, qty: 3 }                 2,3
]}

// Mixed / non-uniform (list)
{ items: [1, { a: 1 }, 'x'] }   → items[3]:
                                    - 1
                                    - a: 1
                                    - x

// Array of arrays
{ pairs: [[1, 2], [3, 4]] }     → pairs[2]:
                                    - [2]: 1,2
                                    - [2]: 3,4

// Root array
['x', 'y']                      → [2]: x,y

// Empty containers
{}                              → (empty output)
{ items: [] }                   → items[0]:

// Special quoting
{ note: 'hello, world' }        → note: "hello, world"
{ items: ['true', true] }       → items[2]: "true",true

Ports in Other Languages #

Special Thanks to Johann Schopplich see his repo #

https://github.com/johannschopplich/toon

License #

MIT License © 2025-PRESENT Wisam idris

2
likes
160
points
--
downloads

Publisher

unverified uploader

Weekly Downloads

A compact, human-readable data serialization format similar to JSON but designed for configuration files and structured data.

Repository (GitHub)
View/report issues

Topics

#serialization #configuration #data-format #human-readable

Documentation

API reference

License

MIT (license)

More

Packages that depend on toon_dart