tflite_plus 1.0.3 copy "tflite_plus: ^1.0.3" to clipboard
tflite_plus: ^1.0.3 copied to clipboard

A comprehensive Flutter plugin for Google AI's LiteRT (TensorFlow Lite) with advanced machine learning capabilities for both Android and iOS platforms.

1.0.3 #

Enhanced Documentation & Examples 📚 #

Documentation Improvements

  • Comprehensive Examples README: Complete rewrite of example/README.md with detailed documentation
    • 15+ Example Showcase: Comprehensive catalog of all available ML examples
    • Feature Matrix: Detailed comparison of capabilities across Computer Vision, Audio, NLP, and Advanced AI
    • Platform Support: Clear platform compatibility matrix for all examples
    • Quick Start Guide: Step-by-step setup instructions with code examples
    • Live Code Samples: Ready-to-use code snippets for:
      • Image Classification with MobileNet
      • Real-time Object Detection with camera streams
      • Audio Classification with microphone input
      • Text Classification and sentiment analysis
      • Proper resource management and error handling

Examples Coverage

  • Computer Vision: 10 examples (Image Classification, Object Detection, Pose Estimation, Segmentation, Style Transfer, etc.)
  • Audio Processing: YAMNet audio classification with live stream support
  • Natural Language Processing: Text classification and BERT Q&A examples
  • Advanced AI: Reinforcement learning and gesture recognition demos

Developer Experience

  • Setup Instructions: Detailed platform-specific configuration guides
  • Troubleshooting Section: Common issues and solutions
  • Best Practices: Performance optimization and resource management tips
  • Contributing Guidelines: Clear instructions for adding new examples
  • Learning Resources: Educational content for ML concepts and implementation patterns

Technical Details

  • Cross-Platform Support: Updated compatibility information for Android, iOS, and Desktop platforms
  • Hardware Acceleration: Documented GPU, NNAPI, Metal, and CoreML delegate usage
  • Model Management: Guidelines for downloading and managing TensorFlow Lite models
  • Performance Optimization: Memory usage and inference speed optimization techniques

1.0.2 #

Major API Overhaul - FFI Implementation 🔄 #

Breaking Changes

  • Complete API Rewrite: Migrated from high-level method channel API to low-level FFI-based Interpreter API
  • Removed Legacy API: All TflitePlus.* static methods have been removed:
    • TflitePlus.loadModel()
    • TflitePlus.runModelOnImage()
    • TflitePlus.detectObjectOnImage()
    • TflitePlus.runPoseNetOnImage()
    • TflitePlus.getAvailableDelegates()
    • TflitePlus.close()

New Features

  • FFI Interpreter API: Direct FFI bindings to TensorFlow Lite C++ library
    • Interpreter.fromAsset() - Load models from Flutter assets
    • Interpreter.fromFile() - Load models from file system
    • Interpreter.fromBuffer() - Load models from memory buffer
    • interpreter.run() - Single input/output inference
    • interpreter.runForMultipleInputs() - Multi-input/output inference
    • interpreter.invoke() - Raw inference execution
  • Hardware Delegates: Platform-specific acceleration
    • GpuDelegate (Android)
    • MetalDelegate (iOS)
    • XNNPackDelegate (Cross-platform)
    • CoreMLDelegate (iOS)
  • InterpreterOptions: Configuration for threads, delegates, and optimization
  • Direct Tensor Access: Low-level tensor manipulation with Tensor class
  • Model Management: Model class for advanced model operations

Migration Guide

// Old API (v1.0.0)
await TflitePlus.loadModel(model: 'model.tflite');
final results = await TflitePlus.runModelOnImage(path: imagePath);

// New API (v1.0.1+)
final interpreter = await Interpreter.fromAsset('model.tflite');
final input = Float32List(inputSize);
final output = List.filled(outputSize, 0.0);
interpreter.run(input, output);
interpreter.close();

Improvements

  • Performance: Direct FFI calls eliminate method channel overhead
  • Memory Management: Explicit resource control with close() method
  • Type Safety: Strongly typed tensor operations
  • Lower-level Access: Full control over inference pipeline
  • Cross-platform: Unified API across Android and iOS

Developer Experience

  • Updated Documentation: All examples updated to new Interpreter API
  • Complete Examples: Real-world image classification and batch processing samples
  • Migration Support: Clear migration path from legacy API
  • Error Handling: Improved exception handling with specific error types

1.0.0 #

Initial Release 🎉 #

Features

  • Image Classification: Complete support for image classification using TensorFlow Lite models
  • Object Detection: Comprehensive object detection with bounding boxes and confidence scores
  • Pose Estimation: Human pose estimation using PoseNet models
  • Semantic Segmentation: Pixel-level image segmentation capabilities
  • Multi-Platform Support: Full Android and iOS compatibility
  • Hardware Acceleration:
    • Android: GPU delegate, NNAPI delegate
    • iOS: Metal delegate, CoreML delegate
  • Flexible Input Methods: Support for both file paths and binary data
  • Asynchronous Operations: Non-blocking inference with proper async/await support
  • Model Management: Load, close, and query model information
  • Comprehensive API: All major TensorFlow Lite operations covered

Platform Support

  • Android: API level 21+ with LiteRT 2.0.2
  • iOS: iOS 12.0+ with TensorFlow Lite Swift

Dependencies

  • Google AI Edge LiteRT 2.0.2
  • TensorFlow Lite Task Vision/Text libraries
  • GPU acceleration libraries for both platforms

Documentation

  • Comprehensive README with examples
  • API documentation for all methods
  • Performance optimization guides
  • Troubleshooting section
  • Example app with practical demonstrations

Developer Experience

  • Type-safe Dart APIs
  • Comprehensive error handling
  • Detailed logging and debugging support
  • Easy integration with existing Flutter apps
  • Extensive customization options
3
likes
150
points
187
downloads

Publisher

verified publishercodebumble.net

Weekly Downloads

A comprehensive Flutter plugin for Google AI's LiteRT (TensorFlow Lite) with advanced machine learning capabilities for both Android and iOS platforms.

Homepage
Repository (GitHub)
View/report issues
Contributing

Topics

#machine-learning #tensorflow #litert #ai #object-detection

Documentation

Documentation
API reference

License

MIT (license)

Dependencies

ffi, flutter, image, path, plugin_platform_interface, quiver

More

Packages that depend on tflite_plus

Packages that implement tflite_plus