tflite 1.0.0 tflite: ^1.0.0 copied to clipboard
A Flutter plugin for accessing TensorFlow Lite. Supports both iOS and Android.
tflite #
A Flutter plugin for accessing TensorFlow Lite API. Supports Classification and Object Detection on both iOS and Android.
Breaking changes since 1.0.0: #
- Updated to TensorFlow Lite API v1.12.0.
- No longer accepts parameter
inputSize
andnumChannels
. They will be retrieved from input tensor. numThreads
is moved toTflite.loadModel
.
Installation #
Add tflite
as a dependency in your pubspec.yaml file.
Android #
In android/app/build.gradle
, add the following setting in android
block.
aaptOptions {
noCompress 'tflite'
}
iOS #
If you get error like "'vector' file not found", please open ios/Runner.xcworkspace
in Xcode, click Runner > Tagets > Runner > Build Settings, search Compile Sources As
, change the value to Objective-C++
;
Usage #
- Create a
assets
folder and place your label file and model file in it. Inpubspec.yaml
add:
assets:
- assets/labels.txt
- assets/mobilenet_v1_1.0_224.tflite
- Import the library:
import 'package:tflite/tflite.dart';
- Load the model and labels:
String res = await Tflite.loadModel(
model: "assets/mobilenet_v1_1.0_224.tflite",
labels: "assets/labels.txt",
numThreads: 1 // defaults to 1
);
-
See Image Classication and Object Detection below.
-
Release resources:
await Tflite.close();
Image Classification #
- Run the model on image file:
var recognitions = await Tflite.runModelOnImage(
path: filepath, // required
imageMean: 0.0, // defaults to 117.0
imageStd: 255.0, // defaults to 1.0
numResults: 2, // defaults to 5
threshold: 0.2 // defaults to 0.1
);
- Run the model on byte list:
var recognitions = await Tflite.runModelOnBinary(
binary: imageToByteList(image, 224, 127.5, 127.5),// required
numResults: 6, // defaults to 5
threshold: 0.05, // defaults to 0.1
);
Uint8List imageToByteList(Image image, int inputSize, double mean, double std) {
var convertedBytes = Float32List(1 * inputSize * inputSize * 3);
var buffer = Float32List.view(convertedBytes.buffer);
int pixelIndex = 0;
for (var i = 0; i < inputSize; i++) {
for (var j = 0; j < inputSize; j++) {
var pixel = image.getPixel(i, j);
buffer[pixelIndex++] = (((pixel >> 16) & 0xFF) - mean) / std;
buffer[pixelIndex++] = (((pixel >> 8) & 0xFF) - mean) / std;
buffer[pixelIndex++] = (((pixel) & 0xFF) - mean) / std;
}
}
return convertedBytes.buffer.asUint8List();
}
- Output fomart:
{
index: 0,
label: "person",
confidence: 0.629
}
Object Detection #
- SSD MobileNet:
var recognitions = await Tflite.detectObjectOnImage(
path: filepath, // required
model: "SSDMobileNet"
imageMean: 127.5,
imageStd: 127.5,
threshold: 0.4, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
);
- Tiny YOLOv2:
var recognitions = await Tflite.detectObjectOnImage(
path: filepath, // required
model: "YOLO"
imageMean: 0.0,
imageStd: 255.0,
threshold: 0.3, // defaults to 0.1
numResultsPerClass: 2,// defaults to 5
List anchors: anchors,// defaults to [0.57273,0.677385,1.87446,2.06253,3.33843,5.47434,7.88282,3.52778,9.77052,9.16828]
blockSize: 32, // defaults to 32
numBoxesPerBlock: 5 // defaults to 5
);
- Output fomart:
x, y, w, h
are between [0, 1]. You can scale x, w
by the width and y, h
by the height of the image.
{
detectedClass: "hot dog",
confidenceInClass: 0.123,
rect: {
x: 0.15,
y: 0.33,
w: 0.80,
h: 0.27
}
}
Demo #
Refer to the example.