synadart 0.4.1+1 copy "synadart: ^0.4.1+1" to clipboard
synadart: ^0.4.1+1 copied to clipboard

outdated

Library for creating neural networks, with a purely Dart implementation.

example/example.dart

import 'package:synadart/src/layers/core/dense.dart';
import 'package:synadart/synadart.dart';

void main() {
  final network = Sequential(learningRate: 0.2);
  
  network.addLayer(Dense(
    size: 15,
    activation: ActivationAlgorithm.sigmoid,
  ));

  network.addLayer(Dense(
    size: 5,
    activation: ActivationAlgorithm.sigmoid,
  ));

  network.addLayer(Dense(
    size: 1,
    activation: ActivationAlgorithm.sigmoid,
  ));

  // We are expecting to get the number '5'
  final expected = [
    [0.01],
    [0.01],
    [0.01],
    [0.01],
    [0.01],
    [0.99],
    [0.01],
    [0.01],
    [0.01],
    [0.01],
  ];

    // Training data contains different number patterns
  final trainingData = [
    '111101101101111'.split('').map(double.parse).toList(),
    '001001001001001'.split('').map(double.parse).toList(),
    '111001111100111'.split('').map(double.parse).toList(),
    '111001111001111'.split('').map(double.parse).toList(),
    '101101111001001'.split('').map(double.parse).toList(),
    '111100111001111'.split('').map(double.parse).toList(), // This is the number 5
    '111100111101111'.split('').map(double.parse).toList(),
    '111001001001001'.split('').map(double.parse).toList(),
    '111101111101111'.split('').map(double.parse).toList(),
    '111101111001111'.split('').map(double.parse).toList(),
  ];

    // Test data which contains distorted patterns of the number 5
  final testData = [
    '111100111000111'.split('').map(double.parse).toList(),
    '111100010001111'.split('').map(double.parse).toList(),
    '111100011001111'.split('').map(double.parse).toList(),
    '110100111001111'.split('').map(double.parse).toList(),
    '110100111001011'.split('').map(double.parse).toList(),
    '111100101001111'.split('').map(double.parse).toList(),
  ];

  // The number 5 itself
  final numberFive = trainingData[5];

  // Train the network using the training and expected data
  network.train(inputs: trainingData, expected: expected, iterations: 5000);

  print('Confidence in recognising a 5: ${network.process(numberFive)}');
  for (final test in testData) {
    print('Confidence in recognising a distorted 5: ${network.process(test)}');
  }
  print('Is 0 a 5? ${network.process(trainingData[0])}');
  print('Is 8 a 5? ${network.process(trainingData[8])}');
  print('Is 3 a 5? ${network.process(trainingData[3])}');
}
15
likes
0
points
56
downloads

Publisher

verified publishervxern.dev

Weekly Downloads

Library for creating neural networks, with a purely Dart implementation.

Repository (GitHub)
View/report issues

License

unknown (license)

Dependencies

sprint

More

Packages that depend on synadart