onnxruntime 1.4.0 copy "onnxruntime: ^1.4.0" to clipboard
onnxruntime: ^1.4.0 copied to clipboard

Flutter plugin for OnnxRuntime provides an easy, flexible, and fast Dart API to integrate Onnx models in flutter apps across mobile and desktop platforms.

OnnxRuntime Plugin #

pub package

Overview #

Flutter plugin for OnnxRuntime via dart:ffi provides an easy, flexible, and fast Dart API to integrate Onnx models in flutter apps across mobile and desktop platforms.

Platform Android iOS Linux macOS Windows
Compatibility API level 21+ * * * *
Architecture arm32/arm64 * * * *

*: Consistent with Flutter

Key Features #

  • Multi-platform Support for Android, iOS, Linux, macOS, Windows, and Web(Coming soon).
  • Flexibility to use any Onnx Model.
  • Acceleration using multi-threading.
  • Similar structure as OnnxRuntime Java and C# API.
  • Inference speed is not slower than native Android/iOS Apps built using the Java/Objective-C API.
  • Run inference in different isolates to prevent jank in UI thread.

Getting Started #

In your flutter project add the dependency:

dependencies:
  ...
  onnxruntime: x.y.z

Usage example #

Import #

import 'package:onnxruntime/onnxruntime.dart';

Initializing environment #

OrtEnv.instance.init();

Creating the Session #

final sessionOptions = OrtSessionOptions();
const assetFileName = 'assets/models/test.onnx';
final rawAssetFile = await rootBundle.load(assetFileName);
final bytes = rawAssetFile.buffer.asUint8List();
final session = OrtSession.fromBuffer(bytes, sessionOptions!);

Performing inference #

final shape = [1, 2, 3];
final inputOrt = OrtValueTensor.createTensorWithDataList(data, shape);
final inputs = {'input': inputOrt};
final runOptions = OrtRunOptions();
final outputs = await _session?.runAsync(runOptions, inputs);
inputOrt.release();
runOptions.release();
outputs?.forEach((element) {
  element?.release();
});

Releasing environment #

OrtEnv.instance.release();
41
likes
160
pub points
88%
popularity

Publisher

unverified uploader

Flutter plugin for OnnxRuntime provides an easy, flexible, and fast Dart API to integrate Onnx models in flutter apps across mobile and desktop platforms.

Repository (GitHub)
View/report issues

Topics

#onnx #tflite #pytorch #ai

Documentation

API reference

License

MIT (license)

Dependencies

ffi, flutter

More

Packages that depend on onnxruntime