matrices 1.2.7 matrices: ^1.2.7 copied to clipboard
A matrix operations and linear algebra library for Dart and Flutter.
Matrices - Matrix Operations and Linear Algebra Library #
Matrices is a matrix operations and linear algebra library for Dart. It was developed to provide matrix operations support for projects such as Astable. All operations are currently implemented in Dart language. To use it, you need to import the matrices.dart file. Also, before using Matrices, you need to understand the concepts related to linear algebra.
Linear algebra is a branch of mathematics that deals with vectors, linear spaces, linear transformations and finite dimensional systems of linear equations. Linear algebra deals with linear relations. A linear relationship means that the relationship between mathematical objects is expressed in a one-time form. Since nonlinear models in scientific research can often be approximated as linear models, linear algebra is widely used in the natural and social sciences.
Getting Started #
/// Creating a matrix
var mat = Matrix.fromList([
[1, 2, 3],
[4, 5, 6]
]);
print( mat );
// Matrix: 2x4
// [1.0, 2.0, 3.0]
// [4.0, 5.0, 6.0]
/// Creating a matrix filled with 0’s
var mat = Matrix.zero(2, 3);
print( mat );
// Matrix: 2x3
// [0.0, 0.0, 0.0]
// [0.0, 0.0, 0.0]
/// Creating a matrix filled with 1’s
var mat = Matrix.one(2, 3);
print( mat );
// Matrix: 2x3
// [1.0, 1.0, 1.0]
// [1.0, 1.0, 1.0]
/// Creating a matrix filled with certain value
var mat = Matrix.number(9, 2, 3);
print( mat );
// Matrix: 2x3
// [9.0, 9.0, 9.0]
// [9.0, 9.0, 9.0]
/// Creating a matrix from a flattened list
// If the length of the flattened list is smaller than the expected matrix size,
// zeros will be filled in the vacant position.
var mat1 = Matrix.fromFlattenedList([1, 2, 3, 4], 2, 2);
var mat2 = Matrix.fromFlattenedList([1, 2, 3, 4], 2, 3);
print(mat1);
print(mat2);
// Matrix: 2x2
// [1.0, 2.0]
// [3.0, 4.0]
// Matrix: 2x3
// [1.0, 2.0, 3.0]
// [4.0, 0.0, 0.0]
/// Creating a matrix filled with random values
var mat = Matrix.random(2, 3);
print( mat );
// Matrix: 2x3
// [0.38224693703597046, 0.5412146597032305, 0.6424342222644003]
// [0.8491145735932242, 0.6236773300386973, 0.25269555696856316]
/// Addition
print( mat + 3 );
print( mat + mat );
// Matrix: 2x3
// [4.0, 5.0, 6.0]
// [7.0, 8.0, 9.0]
// Matrix: 2x3
// [2.0, 4.0, 6.0]
// [8.0, 10.0, 12.0]
/// Take the matrix mat as example
Matrix mat 2x4
[1, 2, 3, 4]
[5, 6, 7, 8]
/// Indexing a matrix element
print( mat[1][2] );
// 7.0
/// Number of rows
print( mat.rowCount );
// 2
/// Number of columns
print( mat.columnCount );
// 4
/// Total number of elements
print( mat.count );
// 8
/// Slicing a row
print( mat.row(0) );
// An easier slicing method
print( mat[0] );
// [1.0, 2.0, 3.0, 4.0]
// [1.0, 2.0, 3.0, 4.0]
/// Slicing a column
print( mat.column(0) );
// Here, we also provide an easier slicing method for columns
// Add a minus before real column index to slice column (except the 1st column)
// Slicing the 1st column
print( mat[''] );
// Slicing the 2nd column
print( mat[-1] );
// [1.0, 5.0]
// [1.0, 5.0]
// [2.0, 6.0]
/// Transposing
print( mat.transpose );
// Matrix: 4x2
// [1.0, 5.0]
// [2.0, 6.0]
// [3.0, 7.0]
// [4.0, 8.0]
/// Row Echelon Form
print( mat.rowEchelonForm );
// Matrix: 2x4
// [1.0, 0.0, -1.00000, -2.00000]
// [0.0, 1.0, 2.00000, 3.00000]
/// Rank
print( mat.rank );
// 2
/// Take the matrix mat as example, too.
Matrix mat 2x4
[1, 2, 3, 4]
[5, 6, 7, 8]
/// Modify an element
mat[0][0] = 6;
print( mat[0] );
// [6.0, 2.0, 3.0, 4.0]
/// Modify a row
mat.setRow([6, 6, 6, 6], 0);
print( mat[0] );
// [6.0, 6.0, 6.0, 6.0]
// A eaiser way to modify a row
mat[0] = [8, 8, 8, 8];
print( mat[0] );
// [8.0, 8.0, 8.0, 8.0]
/// Modify a column
mat.setColumn([6, 6], 0);
print( mat );
// Matrix: 2x4
// [6.0, 2.0, 3.0, 4.0]
// [6.0, 6.0, 7.0, 8.0]
// A eaiser way to modify a column
// Add a minus before real column index to modify column (except the 1st column which requires an empty string)
mat[''] = [8, 8];
mat[-1] = [9, 9];
print( mat );
// Matrix: 2x4
// [8.0, 9.0, 3.0, 4.0]
// [8.0, 9.0, 7.0, 8.0]
/// Subtraction
var mat1 = Matrix.fromList([
[1, 2, 1],
[1, 2, 1]
]);
print( mat - 3 );
print( mat - mat1 );
// Matrix: 2x3
// [-2.0, -1.0, 0.0]
// [1.0, 2.0, 3.0]
// Matrix: 2x3
// [0.0, 0.0, 2.0]
// [3.0, 3.0, 5.0]
/// Scalar Multiplication
// Note: Scalar should be on the right position of the operator *
print( mat * 3 );
// Matrix: 2x3
// [3.0, 6.0, 9.0]
// [12.0, 15.0, 18.0]
/// Matrix Product
var mat2 = Matrix.fromList([
[2, 3.5],
[1, -2],
[-4, 0.5]
]);
print( mat * mat2 );
// Matrix: 2x2
// [-8.0, 1.0]
// [-11.0, 7.0]
/// This is only a small part of Matrices, please check the documentation for more usage !
User Guide #
Find more functions and usage, please click Matrices Document to explore the exciting world of matrices
Who's using it? #
- Astable - A beautiful and powerful structural mechanics software