langchain_tiktoken 1.0.1 langchain_tiktoken: ^1.0.1 copied to clipboard
A BPE tokeniser for use with OpenAI's models. It exposes APIs used for processing text using tokens.
Loading an encoding #
You can load an encoding by either encoding name
or by model name
:
// 1. Load an encoding by encoding name
final encoding = getEncoding("cl100k_base");
print(encoding.name) // 'cl100k_base'
// 2. Load an encoding by model name
final encoding = encodingForModel("gpt-3.5-turbo");
print(encoding.name) // 'cl100k_base'
Turning text into tokens #
For turning text into tokens you can use encoding.encode()
method:
final encoding = encodingForModel("gpt-3.5-turbo");
print(encoding.encode("tiktoken is great!")); // [83, 1609, 5963, 374, 2294, 0]
Count tokens by counting the length of the list returned by encode
method:
/// Returns the number of tokens in a text string.
int numTokensFromString(String string, String encodingName) {
final encoding = getEncoding(encodingName);
final numTokens = encoding.encode(string).length;
return numTokens;
}
print(numTokensFromString("tiktoken is great!", "cl100k_base")); // 6
Turning tokens into text #
For turning tokens into text you can use encoding.decode()
method:
final encoding = encodingForModel("gpt-3.5-turbo");
print(encoding.decode([83, 1609, 5963, 374, 2294, 0])); // 'tiktoken is great!'
Warning: although .decode()
can be applied to single tokens, beware that it can be lossy for tokens that aren't on utf-8 boundaries.
For single tokens, .decode_single_token_bytes()
safely converts a single integer token to the bytes it represents.
final encoding = encodingForModel("gpt-3.5-turbo");
final tokens = [83, 1609, 5963, 374, 2294, 0];
final bytes = tokens.map((token) => encoding.decodeSingleTokenBytes(token));
print(bytes.map((e) => utf8.decode(e)).toList()); // ['t', 'ik', 'token', 'is', 'great', '!']
Comparing encodings #
Different encodings can vary in how they split words, group spaces, and handle non-English characters. Using the methods above, we can compare different encodings on a few example strings.
/// Prints a comparison of three string encodings.
void compareEncodings(String exampleString) {
// print the example string
print('\nExample string: "$exampleString"');
// for each encoding, print the number of tokens, the token integers, and the token bytes
for (var encodingName in ["gpt2", "p50k_base", "cl100k_base"]) {
final encoding = getEncoding(encodingName);
final tokenIntegers = encoding.encode(exampleString);
final numTokens = tokenIntegers.length;
final tokenBytes = tokenIntegers.map((token) => encoding.decodeSingleTokenBytes(token));
print("");
print("$encodingName: $numTokens tokens");
print("token integers: $tokenIntegers");
print("token bytes: ${tokenBytes.map(utf8.decode).toList()}");
}
}
compareEncodings("antidisestablishmentarianism");
// Example string: "antidisestablishmentarianism"
// gpt2: 5 tokens
// token integers: [415, 29207, 44390, 3699, 1042]
// token bytes: ['ant', 'idis', 'establishment', 'arian', 'ism']
// p50k_base: 5 tokens
// token integers: [415, 29207, 44390, 3699, 1042]
// token bytes: ['ant', 'idis', 'establishment', 'arian', 'ism']
// cl100k_base: 6 tokens
// token integers: [519, 85342, 34500, 479, 8997, 2191]
// token bytes: ['ant', 'idis', 'establish', 'ment', 'arian', 'ism']