lambda_calculus 1.3.0 lambda_calculus: ^1.3.0 copied to clipboard
A library for lambda calculus. It supports parsing and evaluating lambda terms with different strategies. It also has preliminary support for type inference.
// ignore_for_file: avoid_print
import 'package:lambda_calculus/lambda_calculus.dart';
void main(List<String> arguments) {
// This main function is a walkthrough for this lambda calculus interpreter,
// assuming you already know about lambda calculus.
// Check out each function for more details.
print('PART I: UNTYPED LAMBDA CALCULUS\n');
_printExamples();
_parseLambda();
_countFreeVars();
_evaluationsByValue();
_fullEvaluations();
_evaluationsByName();
_factorial();
print('');
print('PART II: TYPED LAMBDA CALCULUS\n');
final l = r"\f. \g. \x. f (g x)".toLambda()!;
print("The type for $l is ${l.findType()}");
final m = r"\a. \b. \c. a c (b c)".toLambda()!;
print("The type for $m is ${m.findType()}");
print("The type for ${Lambda.constants.and()} is "
"${Lambda.constants.and().findType()}");
print('');
}
void _printExamples() {
// This function prints out several useful lambda expressions.
print('Some lambda expressions with minimal brackets: ');
print('Lambda Id: ${Lambda.constants.identity()}');
print('Lambda True: ${Lambda.constants.lambdaTrue()}');
print('Lambda False: ${Lambda.constants.lambdaFalse()}');
print('Lambda Test: ${Lambda.constants.test()}');
print('Lambda And: ${Lambda.constants.and()}');
print('Lambda Pair: ${Lambda.constants.pair()}');
print('Lambda Not: ${Lambda.constants.not()}');
print('Lambda Succ: ${Lambda.constants.succ()}');
print('Lambda Times: ${Lambda.constants.times()}');
print('Lambda Plus: ${Lambda.constants.plus()}');
print('Lambda Seven: ${Lambda.constants.seven()}');
print('Omega: ${Lambda.constants.omega()}');
print('Y-Combinator: ${Lambda.constants.yCombinator()}');
print('');
}
void _parseLambda() {
// This function parses several lambda expressions from String.
String str;
Lambda? temp;
print('Lambda parser: ');
// The names of the variables are usually preserved.
// Nameless variables are converted to _x1, _x2 etc., but otherwise they are
// syntactically identical.
print("1. Print the 'succ' expression:");
str = 'λa. λb . λc. b (a b c)';
temp = str.toLambda();
print(' original: $str');
print(' parsed: $temp');
// We can also use slash and backslash to replace the lambda letter, as well
// as "->" to replace the ".".
print('2. Print the Y-Combinator:');
str = r'/x. (\y -> x (\z. y y z)) (/y. x (/z. y y z))';
temp = str.toLambda();
print(' original: $str');
print(' parsed: $temp');
print('3. Print an invalid lambda expression:');
str = 'λx. ';
temp = str.toLambda();
print(' original: $str');
print(' parsed: $temp');
// We can omit the variable after 'λ' if it is not used. In this case, a name
// in the form of _x{n} will be generated.
print('4. Print a lambda expression with an unused variable:');
str = 'λx. λ. x';
temp = str.toLambda();
print(' original: $str');
print(' parsed: $temp');
// We can also parse lambda expression written in De Bruijn Indices. Again,
// names in the form of _x{n} will be generated.
print('5. Print a lambda expression with De Bruijn Indices:');
str = 'λ. λ. 1 (1 0)';
temp = str.toLambda();
print(' original: $str');
print(' parsed: $temp');
// If the same variable name has been defined more than once, each usage is
// bounded to the closest definition.
print('6. λx. λx. x is the same as λx. λy. y');
str = 'λx. λx. x';
temp = str.toLambda();
print(' original: $str');
print(' parsed without names: ${temp!.toStringNameless()}');
/// For nested abstractions, we can omit the lambda symbol for the inner
/// abstractions.
print('7. λx y z. x y z is the same as λx. λy. λz. x y z');
str = 'λx y z. x y z';
temp = str.toLambda();
print(' original: $str');
print(' parsed without names: $temp');
print('');
}
void _countFreeVars() {
Lambda temp;
temp = r'(\x. \y. x c) (\a. \b. c a (\d. \c. a c d))'.toLambda()!;
print('Lambda: $temp');
print('Number of free vars: ${temp.freeCount(countDistinct: true)}');
print('');
}
void _evaluationsByValue() {
// This function demonstrates the evaluation of lambda expressions through
// beta-reduction with the "call by value" scheme.
Lambda temp;
print('Evaluate lambda expressions with the "call by value" scheme: ');
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.test(),
LambdaBuilder.constants.lambdaTrue(),
LambdaBuilder.constants.two(),
LambdaBuilder.constants.one(),
]).build();
// We use the .eval1() method to evaluate a lambda expression by one step.
print("1. Evaluate 'test true 2 1' step-by-step: ");
print(' $temp');
print(' = ${temp.eval1()}');
print(' = ${temp.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()!.eval1()!.eval1()}');
// We use the .eval() method to evaluate a lambda expression fully.
print("2. Evaluate 'test false 2 1' directly to its simplest form: ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.test(),
LambdaBuilder.constants.lambdaFalse(),
LambdaBuilder.constants.two(),
LambdaBuilder.constants.one(),
]).build();
print(' $temp\n = ${temp.eval()}');
// Demonstration of the "call by value" scheme.
print('3. An application within an abstraction is not reduced: ');
temp = Lambda(
form: LambdaForm.abstraction,
exp1: LambdaBuilder.applyAll(
[
LambdaBuilder.constants.identity(),
LambdaBuilder.constants.lambdaFalse(),
],
).build(),
);
print(' $temp\n = ${temp.eval()}');
// Another example: 'succ 2' results an expression behaviourally equivalent to
// but syntactically distinct from 3.
print("4. Evaluate 'succ 2', but the result is not the same as '3': ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.succ(),
LambdaBuilder.constants.two(),
]).build();
print(' $temp\n = ${temp.eval()}');
print("5. Evaluate 'succ 2', converting it to a natural number: ");
print(' $temp\n = ${temp.toInt()}');
print('');
}
void _fullEvaluations() {
// This function demonstrates the evaluation of lambda expressions through
// full beta-reduction.
Lambda temp;
print('Evaluate lambda expressions using full beta-reduction: ');
// We pass 'LambdaEvaluationType.FULL_REDUCTION' to the 'evalType' parameter
// in .eval() method to evaluate a lambda expression through full
// beta-reduction.
print("1. Evaluate '2 + 3' directly to its simplest form: ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.plus(),
LambdaBuilder.constants.two(),
LambdaBuilder.constants.three(),
]).build();
print(' $temp');
print(' = ${temp.eval(evalType: LambdaEvaluationType.fullReduction)}');
print("2. Evaluate '2 * 3' directly to its simplest form: ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.times(),
LambdaBuilder.constants.two(),
LambdaBuilder.constants.three(),
]).build();
print(' $temp');
print(' = ${temp.eval(evalType: LambdaEvaluationType.fullReduction)}');
print("3. Evaluate '2 ^ 3' directly to its simplest form: ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.power(),
LambdaBuilder.constants.two(),
LambdaBuilder.constants.three(),
]).build();
print(' $temp');
print(' = ${temp.eval(evalType: LambdaEvaluationType.fullReduction)}');
print('');
}
void _evaluationsByName() {
// This function demonstrates the evaluation of lambda expressions through
// beta-reduction with the "call by name" scheme.
Lambda temp;
print('Compare "call by name" with "call by value": ');
// We pass 'LambdaEvaluationType.CALL_BY_NAME' to the 'evalType' parameter
// in .eval1() method to evaluate a lambda expression through the
// "call-by-name" scheme.
print("1. Evaluate 'true 1 omega' lazily (call by name): ");
temp = LambdaBuilder.applyAll([
LambdaBuilder.constants.lambdaTrue(),
LambdaBuilder.constants.one(),
LambdaBuilder.constants.omega(),
]).build();
print(' $temp');
print(' = ${temp.eval1(evalType: LambdaEvaluationType.callByName)}');
print(
' = ${temp.eval1(evalType: LambdaEvaluationType.callByName)!.eval1(evalType: LambdaEvaluationType.callByName)}',
);
// In contrast, the expression diverges in a "call by value" scheme.
print("2. Evaluate 'true 1 omega' strictly (call by value): ");
print(' $temp');
print(' = ${temp.eval1()}');
print(' = ${temp.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()!.eval1()}');
print(' = ${temp.eval1()!.eval1()!.eval1()!.eval1()!.eval1()}');
print(' ...');
print('');
}
void _factorial() {
// The factorial function.
Lambda result;
print('Recursive factorial function with the Y-Combinator: ');
final factorial = LambdaBuilder.applyAll([
Lambda.constants.yCombinator(),
r'''
\a.\b.(\.\c.\.2(c)(0))((\.0(\.\.\.0)(\.\.1))b)(\.\.\.1(0))(\.(\.\d.\.2(d(0)))b(a((\c.(\.0(\.\.1))
(c(\d.(\a.\b.\.0(a)(b))((\.0(\.\.0))d)((\a.\.\.1(a(1)(0)))((\.0(\.\.0))d)))((\d.\a.\.0(d)
(a))(\.\.0)(\.\.0))))b)))(\.0)
'''
.toLambda()!,
]).build();
print('The factorial lamdba expression: ');
print(' $factorial');
print('1. Evaluate 0!: ');
result = LambdaBuilder.applyAll([factorial, LambdaBuilder.constants.zero()])
.build()
.eval();
print(' $result');
print(' = ${result.toInt()}');
print('2. Evaluate 3!: ');
result = LambdaBuilder.applyAll([factorial, LambdaBuilder.constants.three()])
.build()
.eval();
print(' $result');
print(' = ${result.toInt()}');
print('');
}