image_vision 1.0.0
image_vision: ^1.0.0 copied to clipboard
Flutter package for on-device tagging image, detect, recognition & register faces ;
import 'dart:convert';
import 'dart:io';
import 'package:flutter/foundation.dart';
import 'package:flutter/material.dart';
import 'dart:async';
import 'package:flutter/services.dart';
import 'package:image_picker/image_picker.dart';
import 'package:image_vision/image_vision.dart';
import 'dart:developer' as dev;
import 'package:image/image.dart' as img;
void main() {
runApp(const MyApp());
}
class MyApp extends StatefulWidget {
const MyApp({super.key});
@override
State<MyApp> createState() => _MyAppState();
}
class _MyAppState extends State<MyApp> {
String _platformVersion = 'Unknown';
final ImagePicker _picker = ImagePicker();
@override
void initState() {
super.initState();
initPlatformState();
}
Future<List<Map<String, dynamic>>> getLabels(File file) async {
var bytes = await file.readAsBytes();
String jsonLabels = await ImageVision.getTagsOfImage(Uint8List.fromList(bytes.toList()), 0.3);
var labels = List<Map<String, dynamic>>.from(json.decode(jsonLabels));
if (kDebugMode){
dev.log(labels.toString());
}
return labels ;
}
Future<List<Map<String, dynamic>>> getFaces(File file) async {
var bytes = await file.readAsBytes();
String jsonLabels = await ImageVision.detectFacesFromImage(Uint8List.fromList(bytes.toList()));
var faces = List<Map<String, dynamic>>.from(json.decode(jsonLabels));
if (kDebugMode){
dev.log(faces.toString());
}
return faces ;
}
Future<dynamic> recognizeFace(Map<String, dynamic> inputFace, File image) async {
var face = img.decodeImage(await image.readAsBytes());
if (face != null){
face = img.copyCrop(
face,
int.parse(inputFace["left"].toString()),
int.parse(inputFace["top"].toString()),
int.parse(inputFace["width"].toString()),
int.parse(inputFace["height"].toString()),
);
final png = img.encodePng(face);
var rec = await ImageVision.recognizeFace(Uint8List.fromList(png));
var split = rec["confidence"].toString().split(".");
var number = split[0];
if (int.parse(number) < 1){
rec["title"] = "face_not_found";
rec["confidence"] = "0.0";
return rec;
} else {
return rec ;
}
}
return {};
}
Future<String> register(String name, Map<String, dynamic> inputFace, File image) async {
var face = img.decodeImage(await image.readAsBytes());
if (face != null){
face = img.copyCrop(
face,
int.parse(inputFace["left"].toString()),
int.parse(inputFace["top"].toString()),
int.parse(inputFace["width"].toString()),
int.parse(inputFace["height"].toString()),
);
final png = img.encodePng(face);
var rec = await ImageVision.registerFace(name, Uint8List.fromList(png));
dev.log(rec.toString());
return rec ;
}
return "error";
}
// Platform messages are asynchronous, so we initialize in an async method.
Future<void> initPlatformState() async {
String platformVersion;
// Platform messages may fail, so we use a try/catch PlatformException.
// We also handle the message potentially returning null.
try {
platformVersion =
(await ImageVision.initial()).toString();
} on PlatformException {
platformVersion = 'Failed to get platform version.';
}
// If the widget was removed from the tree while the asynchronous platform
// message was in flight, we want to discard the reply rather than calling
// setState to update our non-existent appearance.
if (!mounted) return;
setState(() {
_platformVersion = platformVersion;
});
}
@override
Widget build(BuildContext context) {
return MaterialApp(
home: Scaffold(
appBar: AppBar(
title: const Text('Plugin example app'),
),
body: Center(
child: Text('Running on: $_platformVersion\n'),
),
floatingActionButton: FloatingActionButton(
onPressed: () async {
final XFile? image = await _picker.pickImage(source: ImageSource.gallery);
if (image != null) {
var file = File(image.path);
// get image labels
await getLabels(file);
// get image faces
var faces = await getFaces(file);
// recognize Face
var face = await recognizeFace(faces[0], file);
if (face["title"] == "face_not_found"){
// if face not found you can register it
await register(/** You can use any name for face **/ "Amir", faces[0], file);
} else {
// if face is detected
dev.log(face.toString());
}
}
},
child: const Icon(Icons.photo),
),
),
);
}
}