google_mlkit_image_labeling 0.3.0 copy "google_mlkit_image_labeling: ^0.3.0" to clipboard
google_mlkit_image_labeling: ^0.3.0 copied to clipboard

outdated

A Flutter plugin to use Google's ML Kit Image Labeling to detect and extract information about entities in an image across a broad group of categories.

Google's ML Kit Image Labeling for Flutter #

Pub Version

A Flutter plugin to use Google's ML Kit Image Labeling to detect and extract information about entities in an image across a broad group of categories.

Getting Started #

Before you get started read about the requirements and known issues of this plugin here.

Firebase dependency #

Image Labeling could be used with both Base Models and Custom Models. Base models are bundled with the app. Custom Models are downloaded from Firebase. Since both model options are handled in this plugin, that requires you to add Firebase to your project even if you are only using the Base Models. More details here.

To add Firebase to your project follow these steps:

Usage #

Image Labeling #

Create an instance of InputImage

Create an instance of InputImage as explained here.

final InputImage inputImage;

Create an instance of ImageLabeler

final ImageLabelerOptions options = ImageLabelerOptions(confidenceThreshold: 0.5);
final imageLabeler = ImageLabeler(options: options);

Process image

final List<ImageLabel> labels = await imageLabeler.processImage(inputImage);

for (ImageLabel label in labels) {
  final String text = label.text;
  final int index = label.index;
  final double confidence = label.confidence;
}

Release resources with close()

imageLabeler.close();

Load local custom model #

To use a local custom model add the tflite model to your pubspec.yaml:

assets:
- assets/ml/

Add this method:

import 'dart:io';
import 'package:flutter/services.dart';
import 'package:path/path.dart';
import 'package:path_provider/path_provider.dart';

Future<String> _getModel(String assetPath) async {
  if (io.Platform.isAndroid) {
    return 'flutter_assets/$assetPath';
  }
  final path = '${(await getApplicationSupportDirectory()).path}/$assetPath';
  await io.Directory(dirname(path)).create(recursive: true);
  final file = io.File(path);
  if (!await file.exists()) {
    final byteData = await rootBundle.load(assetPath);
    await file.writeAsBytes(byteData.buffer
        .asUint8List(byteData.offsetInBytes, byteData.lengthInBytes));
  }
  return file.path;
}

Create an instance of [ImageLabeler]:

final modelPath = await _getModel('assets/ml/object_labeler.tflite');
final options = LocalLabelerOptions(modelPath: modelPath);
final imageLabeler = ImageLabeler(options: options);

Managing remote models #

Create an instance of model manager

final modelManager = FirebaseImageLabelerModelManager();

Check if model is downloaded

final bool response = await modelManager.isModelDownloaded(model);

Download model

final bool response = await modelManager.downloadModel(model);

Delete model

final bool response = await modelManager.deleteModel(model);

Example app #

Find the example app here.

Contributing #

Contributions are welcome. In case of any problems look at existing issues, if you cannot find anything related to your problem then open an issue. Create an issue before opening a pull request for non trivial fixes. In case of trivial fixes open a pull request directly.

47
likes
0
pub points
93%
popularity

Publisher

verified publisherflutter-ml.dev

A Flutter plugin to use Google's ML Kit Image Labeling to detect and extract information about entities in an image across a broad group of categories.

Repository (GitHub)
View/report issues

License

unknown (license)

Dependencies

flutter, google_mlkit_commons

More

Packages that depend on google_mlkit_image_labeling