geoengine 0.1.2 copy "geoengine: ^0.1.2" to clipboard
geoengine: ^0.1.2 copied to clipboard

GeoEngine is a Dart library for geospatial analysis and geometry. It has precise distance calculations, coordinates conversions, geodetic processing, and GIS support in Dart.

GeoEngine #

GeoEngine Logo

pub package Null Safety likes points popularity sdk version

Last Commits Pull Requests Code size License

stars forks CI

GeoEngine is a comprehensive Dart library designed for geospatial and geomatic calculations. It provides a wide range of functionalities including distance calculations, coordinate conversions, geocoding, polygon operations, geodetic network analysis, and much more. Whether you are a GIS professional, a geomatics engineer, or a developer working on geospatial applications, GeoEngine is the ultimate toolkit for all your geospatial needs.

Getting Started #

Installation #

Add this to your package's pubspec.yaml file:

dependencies:
  geoengine: any

Usage #

Here's a simple example to calculate the distance between two geographic coordinates:

import 'package:geoengine/geoengine.dart';

void main() {
  var point1 = LatLng(37.7749, -122.4194);
  var point2 = LatLng(34.0522, -118.2437);

  var distance = Distance.haversine(point1, point2);

  print('Distance between points is: ${distance.valueSI} meters');
}

Features #

Core Calculations

Distance and Bearings #

These are ported implementations of the java codes provided by Movable Type Scripts. This page presents a variety of calculations for lati­tude/longi­tude points, with the formulas and code fragments for implementing them.

  • Distance Calculation: Calculate the distance between two geographic coordinates using various algorithms like Haversine, Vincenty, and Great Circle.
var point1 = LatLng(dms2Degree(50, 03, 59), dms2Degree(-5, 42, 53));
var point2 = LatLng(dms2Degree(58, 38, 38), dms2Degree(-3, 04, 12));

print('Distance (Haversine): ${point1.distanceTo(point2, method: DistanceMethod.haversine)!.valueInUnits(LengthUnits.kilometers)} km');
print('Distance (Great Circle): ${point1.distanceTo(point2, method: DistanceMethod.greatCircle)!.valueInUnits(LengthUnits.kilometers)} km');
print('Distance (Vincenty): ${point1.distanceTo(point2, method: DistanceMethod.vincenty)!.valueInUnits(LengthUnits.kilometers)} km');

// Distance (Haversine): 968.8535467131387 km
// Distance (Great Circle): 968.8535467131394 km
// Distance (Vincenty): 969.9329875845247 km
  • Bearing Calculation: Calculate the initial and final bearing between two points on the Earth's surface.
var point1 = LatLng(dms2Degree(50, 03, 59), dms2Degree(-5, 42, 53));
var point2 = LatLng(dms2Degree(58, 38, 38), dms2Degree(-3, 04, 12));

print('Initial Bearing: ${point1.initialBearingTo(point2)}');
print('Final Bearing: ${point1.finalBearingTo(point2)}');
print('Mid Point: ${point1.midPointTo(point2)}');

// Initial Bearing: 9.119818104504077° or 0.15917085310658177 rad or 009° 07' 11.34518"
// Final Bearing: 11.275201271425715° or 0.19678938601142623 rad or 011° 16' 30.72458"
// Mid Point: 054° 21' 44.233" N, 004° 31' 50.421"
  • Destination Point: Given a start point, initial bearing, and distance, this will calculate the destina­tion point and final bearing travelling along a (shortest distance) great circle arc.
var startPoint = LatLng(53.3206, -1.7297); // 53°19′14″N, 001°43′47″W
double bearing = 96.022222; // 096°01′18″
double distance = 124800; // 124.8 km

LatLng destinationPoint = startPoint.destinationPoint(distance, bearing);
var finalBearing = startPoint.finalBearingTo(destinationPoint);

print('Destination point: $destinationPoint');
print('Final bearing: $finalBearing');

// Destination point: 053° 11' 17.891" N, 000° 07' 59.875" E
// Final bearing: 97.51509150337512° or 1.7019594171174142 rad or 097° 30' 54.32941"
  • Interception: Intersection of two paths given start points and bearings This is a rather more complex calculation than most others on this page, but I've been asked for it a number of times. This comes from Ed William’s aviation formulary.
var point1 = LatLng(51.8853, 0.2545);
var bearing1 = 108.55;
var point2 = LatLng(49.0034, 2.5735);
var bearing2 = 32.44;

var intercept = LatLng.intersectionPoint(point1, bearing1, point2, bearing2)!;
  
print('Interception Point: $intercept');

// Interception Point: 050° 54' 27.387" N, 004° 30' 30.869" E
  • Rhumb line: A ‘rhumb line’ (or loxodrome) is a path of constant bearing, which crosses all meridians at the same angle.

Sailors used to (and sometimes still) navigate along rhumb lines since it is easier to follow a constant compass bearing than to be continually adjusting the bearing, as is needed to follow a great circle. Rhumb lines are straight lines on a Mercator Projec­tion map (also helpful for naviga­tion).

var startPoint = LatLng(50.3667, -4.1340); // 50 21 59N, 004 08 02W
var endPoint = LatLng(42.3511, -71.0408); // 42 21 04N, 071 02 27W

var rhumbDist = startPoint.rhumbLineDistance(endPoint);
Bearing rhumbBearing = startPoint.rhumbLineBearing(endPoint);
LatLng rhumbMid = startPoint.rhumbMidpoint(endPoint);

print('Rhumb distance: ${rhumbDist.valueInUnits(LengthUnits.kilometers)} km');
print('Rhumb bearing: $rhumbBearing');
print('Rhumb midpoint: $rhumbMid');

// Rhumb distance: 5197.982109842136 km
// Rhumb bearing: Bearing: 256.66558069454646° or 4.479659459662955 rad or 256° 39' 56.09050"
// Rhumb midpoint: 047° 50' 9.060" N, 038° 13' 28.378" W

Given a start point and a distance d along constant bearing θ, this will calculate the destina­tion point. If you maintain a constant bearing along a rhumb line, you will gradually spiral in towards one of the poles.

var sPt = LatLng(dms2Degree(51, 07, 32), dms2Degree(1, 20, 17));
var dist = 40230;
var bearing = dms2Degree(116, 38, 10);
print('Rhumb Destination: ${sPt.rhumbDestinationPoint(dist, bearing)}');

// Rhumb Destination: 050° 57' 48.074" N, 001° 51' 8.774" E
  • Geodesic Calculations: Find the shortest path between two points on the Earth's surface, taking into account the Earth's curvature which uses the Vincenty approach.
Coordinate Systems

Coordinate Systems #

  • Coordinate Conversion: Convert between different coordinate systems, such as latitude/longitude to UTM or MGRS.

Get the UTM zone number and letter

var u = UTMZones();
var uZone = u.getZone(latitude: 6.5655, longitude: -1.5646);

print(uZone); // 30P
print(u.getHemisphere(uZone)); // N
print(u.getLatZone(6.5655)); // P

Parse MGRS coordinates

print(MGRS.parse('31U DQ 48251 11932')); // 31U DQ 48251 11932
print(MGRS.parse('31UDQ4825111932'));  // 31U DQ 48251 11932

Coordinate conversions

var ll = LatLng(6.5655, -1.5646);
print(ll.toMGRS());
print(ll.toUTM());

// 30N XN 58699 25944
// 30 N 658699.0 725944.0 0.0

print('');
var utm = UTM.fromMGRS(ll.toMGRS());
print(utm);
print(utm.toLatLng());
print(utm.toMGRS());

// 30 N 658699.0 725944.0 0.0
// 006° 33' 55.795" N, 001° 33' 52.586" W
// 30N XN 58699 25944

print('');
var mgrs = MGRS.parse(ll.toMGRS());
print(mgrs.toLatLng());
print(mgrs.toUTM());
print(mgrs);

// 006° 33' 55.795" N, 001° 33' 52.586" W
// 30 N 658699.0 725944.0
// 30N XN 58699 25944
  • Datum Transformations: Transform coordinates between different geodetic datums.
final LatLng pp = LatLng(6.65412, -1.54651, 200);

CoordinateConversion transCoordinate = CoordinateConversion();

Projection sourceProjection = Projection.get('EPSG:4326')!; // Geodetic
// Add a new CRS from WKT
Projection targetProjection = Projection.parse(
      'PROJCS["Accra / Ghana National Grid",GEOGCS["Accra",DATUM["Accra",SPHEROID["War Office",6378300,296,AUTHORITY["EPSG","7029"]],TOWGS84[-199,32,322,0,0,0,0],AUTHORITY["EPSG","6168"]],PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],UNIT["degree",0.0174532925199433,AUTHORITY["EPSG","9122"]],AUTHORITY["EPSG","4168"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",4.666666666666667],PARAMETER["central_meridian",-1],PARAMETER["scale_factor",0.99975],PARAMETER["false_easting",900000],PARAMETER["false_northing",0],UNIT["Gold Coast foot",0.3047997101815088,AUTHORITY["EPSG","9094"]],AXIS["Easting",EAST],AXIS["Northing",NORTH],AUTHORITY["EPSG","2136"]]');

var res = transCoordinate.convert(
  point: pp,
  projSrc: sourceProjection,
  projDst: targetProjection,
  conversion: ConversionType.geodeticToGeodetic, // Geodetic to Geodetic conversion
);

print(pp);  
// 006° 39' 14.832" N, 001° 32' 47.436" W, 200.000
print(res.asLatLng());
// 006° 39' 4.889" N, 001° 32' 48.303" W, 200.331
  • Map Projections: Support for various map projections and functions to transform coordinates between different projections.
final LatLng pp = LatLng(6.65412, -1.54651, 200);

CoordinateConversion transCoordinate = CoordinateConversion();
CoordinateType sourceCoordinateType = CoordinateType.geodetic;
CoordinateType targetCoordinateType = CoordinateType.projected;

// Get WGS84 Geographic Coordinate System
Projection sourceProjection = Projection.get('EPSG:4326')!;
// Get UTM CRS
Projection targetProjectionUTM =
    transCoordinate.getUTMProjection(pp.longitude); 

var res = transCoordinate.convert(
  point: pp,
  projSrc: sourceProjection,
  projDst: targetProjectionUTM,
  conversion: transCoordinate.getConversionType(
      sourceCoordinateType, targetCoordinateType),
  //conversion: ConversionType.geodeticToProjected,
);

print(pp);  
// 006° 39' 14.832" N, 001° 32' 47.436" W, 200.000
print(res);
// Eastings: 660671.6505858237
// Northings: 735749.4963174305
// Height: 200.0
Julian Dates

Julian Date Functions #

The JulianDate class in GeoEngine provides an interface to work with Julian Dates, a continuous count of days since the beginning of the Julian Period on January 1, 4713 BCE. This system is widely used in astronomy and other fields. Here's how you can utilize some of the main functions of this class:

Initialization #

You can create a JulianDate object in different ways:

From a specific date: #

JulianDate date1 = JulianDate.fromDate(year: 2023, month: 8, day: 15);

Using a DateTime object: #

var date = DateTime(2023, 8, 15);
JulianDate originalDate = JulianDate(date);

Comparing Julian Dates #

You can compare two JulianDate objects using the common comparison operators:

JulianDate date2 = JulianDate.fromDate(year: 2023, month: 8, day: 20);

print(date1 == date2); // false
print(date1 < date2);  // true
print(date1 <= date2); // true
print(date1 > date2);  // false
print(date1 >= date2); // false

Conversion Functions #

To Julian Date: #

double jd = originalDate.toJulianDate();
print('Julian Date: $jd');

// Julian Date: 2460171.5

To Modified Julian Date: #

The Modified Julian Date (MJD) is calculated by subtracting 2,400,000.5 from the Julian Date. It's used for convenience and starts from November 17, 1858.

print('Modified Julian Date (1858/11/17): ${originalDate.toModifiedJulianDate()}');

// Modified Julian Date (1858/11/17): 60171.0

Referenced Julian Date: #

You can also get a referenced Julian Date by specifying a reference date:

print('Referenced Julian Date (1960/01/01): ${originalDate.toModifiedJulianDate(referenceDate: DateTime(1960, 1, 1))}');

// Referenced Julian Date (1960/01/01): 23237.0

Converting Back to DateTime #

If you have a Julian Date and wish to get the corresponding Gregorian date:

JulianDate convertedDate = JulianDate.fromJulianDate(jd);
print(convertedDate.dateTime);

// 2023-08-15 00:00:00.000

Example: #

To get the Modified Julian Date with a specific reference date:

print(JulianDate(DateTime(2023, 1, 1)).toModifiedJulianDate(referenceDate: DateTime(1960, 1, 11)));

// 23001.0

Remember, always refer to the documentation or source code for any additional functions or nuances with the JulianDate class in the GeoEngine library.

Least Squares Adjustment

Least Squares Adjustment #

The LeastSquaresAdjustment class in GeoEngine provides a robust way to perform least squares adjustments on geodetic and other types of data. This documentation breaks down the core components and usage of the class.

Overview #

Least squares adjustment is a statistical method to solve an overdetermined system of equations. In the context of GeoEngine, this class can handle various scaling methods, and can be utilized for various geodetic computations including network adjustments.

Initialization #

To initialize the LeastSquaresAdjustment class, you need to provide the design matrix A, the observation vector B, and an optional weight matrix W.

var lsa = LeastSquaresAdjustment(A: A, B: B);

Key Properties #

Here are some of the core properties of the class:

  • x: Unknown parameters.
  • v: Residuals.
  • uv: Unit variance.
  • N: The normal matrix.
  • qxx: Misclosure matrix
  • standardDeviation: Standard deviation of the observations.
  • standardError: Standard error of the observations.
  • standardErrorsOfUnknowns: Standard errors of the unknowns.
  • standardErrorsOfResiduals: Standard errors of the residuals.
  • standardErrorsOfObservations: Standard errors of the observations.
  • chiSquared: Chi-squared value for the least squares adjustment.
  • rejectionCriterion: Rejection criterion for outlier detection, using the specified confidence level.
  • outliers: List of boolean values indicating whether each observation is an outlier (true) or not (false).

Methods #

Chi-Square Test #

To perform a Chi-Square goodness-of-fit test:

var chiSquareTest = lsa.chiSquareTest();

Covariance #

To compute the covariance matrix:

var covMatrix = lsa.covariance();

Error Ellipse #

Compute error ellipse parameters:

var eig = lsa.errorEllipse();

Outliers #

Automatically remove outliers:

var newLsa = lsa.removeOutliersIteratively();
print(newLsa);

Confidence Intervals #

Compute confidence intervals for the unknown parameters:

var lsa = LeastSquaresAdjustment(A: A, B: B);
var intervals = lsa.computeConfidenceIntervals();
print(intervals);  // Output: [(lower1, upper1), (lower2, upper2), ...]

Custom Auto Scaling #

Automatically scales or normalizes the matrices based on custom functions:

var scaledLsa = lsa.customAutoScale(
  matrixNormalizationFunction: (Matrix A) => A.normalize(),
  columnNormalizationFunction: (ColumnMatrix B) => B.normalize(),
  diagonalNormalizationFunction: (DiagonalMatrix W) => W.normalize()
);

Examples #

Here's an example to get you started:

var A = Matrix([
  [-1, 0, 0, 0],
  [-1, 1, 0, 0],
  [0, -1, 1, 0],
  [0, 0, -1, 0],
  [0, 0, -1, 1],
  [0, 0, 0, -1],
  [1, 0, 0, -1],
]);
var W = DiagonalMatrix([1 / 16, 1 / 9, 1 / 49, 1 / 36, 1 / 16, 1 / 9, 1 / 25]);
var B = ColumnMatrix([0, 0, 0.13, 0, 0, -0.32, -0.53]);

var lsa = LeastSquaresAdjustment(A: A, B: B, W: W, confidenceLevel: 40);
var c = lsa.chiSquareTest();
print(c); // (chiSquared: 0.00340817748488164, degreesOfFreedom: 3)

print(lsa);
// Least Squares Adjustment Results:
// ---------------------------------
// Normal (N):
// Matrix: 4x4
// ┌  0.2136111111111111  -0.1111111111111111                  0.0              -0.04 ┐
// │ -0.1111111111111111  0.13151927437641722 -0.02040816326530612                0.0 │
// │                 0.0 -0.02040816326530612   0.1106859410430839            -0.0625 │
// └               -0.04                  0.0              -0.0625 0.2136111111111111 ┘
// 
// Unknown Parameters (x):
// Matrix: 4x1
// ┌  -0.06513489902716646 ┐
// │ -0.045703714070040764 │
// │    0.1900882929187552 │
// └   0.30911630747309227 ┘
// 
// Residuals (v):
// Matrix: 7x1
// ┌  0.06513489902716646 ┐
// │ 0.019431184957125695 │
// │  0.10579200698879596 │
// │  -0.1900882929187552 │
// │  0.11902801455433706 │
// │  0.01088369252690774 │
// └   0.1557487934997413 ┘
// 
// Unit Variance (σ²): 0.0011360591616272134
// 
// Standard Deviation (σ): 0.033705476730454556
// 
// Chi-squared Test (Goodness-of-fit Test):
// Chi-squared value(χ²): 0.00340817748488164
// Degrees of Freedom: 3
// 
// Standard Errors of Unknowns (Cx): 
// [0.10509275934271714, 0.13339652325953671, 0.11787096037126248, 0.08536738678162376]
// 
// Standard Errors of Residuals (Cv): 
// [0.08445388398273435, 0.0340385190674456, 0.1853208260338704, 0.16433066214111094, 0.08042190803509813, 0.054193558000204894, 0.12767979681503475]
// 
// Standard Errors of Observations (Cl): 
// [0.10509275934271714, 0.09521508112867448, 0.14602428002855353, 0.11787096037126248, 0.10820934938363522, 0.08536738678162376, 0.1099970387144662]
// 
// Rejection Criterion (Confidence Level 40.0): 0.01766173284889808
// 
// Outliers (false = accepted, true = rejected): 
// [false, true, false, false, true, false, false]
// 
// Error Ellipse: 
// [0.029441222484548304, 0.01187530402393495, 0.005032048784758579, 0.0036716992155236177]
// 
// ---------------------------------

TODOs #

Geomatic Calculations #

  • Error Propagation: Estimate the uncertainty in spatial measurements.
  • Traverse Calculations: Perform closed and open traverse calculations.
  • Geodetic Networks: Design and analyze geodetic networks.
  • Land Parcel Management: Manage land parcels including subdivision and legal description generation.

Geocoding #

  • Geocoding and Reverse Geocoding: Convert addresses into geographic coordinates and vice versa.

Polygon Operations #

  • Polygon Operations: Create, manipulate, and analyze polygons, including point-in-polygon checks, area calculations, and finding centroids.

Spatial Indexing #

  • Spatial Indexing: Utilize spatial indexing techniques like R-trees or Quad-trees for efficient querying of spatial data.

Remote Sensing #

  • Remote Sensing Calculations: Perform calculations such as NDVI, radiometric correction, and image classification.

Digital Elevation Models #

  • DEM Analysis: Work with Digital Elevation Models, including slope, aspect, and watershed analysis.

Route Planning #

  • Route Planning: Algorithms for route planning and optimization.

GIS File Support #

  • GIS File Support: Read and write common GIS file formats like Shapefiles, GeoJSON, and KML.

Integration with Mapping Services #

  • Integration with Mapping Services: Integrate with popular mapping services like Google Maps, OpenStreetMap, and Bing Maps.

Documentation #

For detailed documentation and examples for each feature, please visit the GeoEngine Documentation.

Contributing #

Contributions are welcome! If you find a bug or would like to request a new feature, please open an issue. For major changes, please open an issue first to discuss what you would like to change.

Testing #

Tests are located in the test directory. To run tests, execute dart test in the project root.

Features and bugs #

Please file feature requests and bugs at the issue tracker.

Author #

Charles Gameti: gameticharles@GitHub.

License #

GeoEngine is licensed under the Apache License - Version 2.0.

10
likes
0
points
53
downloads

Publisher

unverified uploader

Weekly Downloads

GeoEngine is a Dart library for geospatial analysis and geometry. It has precise distance calculations, coordinates conversions, geodetic processing, and GIS support in Dart.

Repository (GitHub)
View/report issues

License

unknown (license)

Dependencies

advance_math, geoxml, http, kdtree, mgrs_dart, proj4dart, xml2json

More

Packages that depend on geoengine