flutter_pose_detection 0.1.0 copy "flutter_pose_detection: ^0.1.0" to clipboard
flutter_pose_detection: ^0.1.0 copied to clipboard

Hardware-accelerated pose detection using native ML frameworks (Apple Vision on iOS, TensorFlow Lite on Android). Detects 33 body landmarks in MediaPipe-compatible format.

Flutter Pose Detection #

Hardware-accelerated pose detection Flutter plugin using native ML frameworks.

pub package License: MIT

Features #

  • Hardware Acceleration: Automatic NPU/GPU acceleration on supported devices
  • Cross-Platform: iOS (Vision Framework) and Android (TensorFlow Lite)
  • 33 Landmarks: MediaPipe-compatible body pose format
  • Multiple Modes: Image, camera stream, and video file analysis
  • High Performance: 15+ FPS realtime, <50ms single image

Platform Support #

Platform ML Framework Acceleration
iOS 14+ Vision Framework Neural Engine (automatic)
Android API 26+ TensorFlow Lite GPU Delegate / NNAPI / CPU

Installation #

dependencies:
  flutter_pose_detection: ^0.1.0

iOS Setup #

Add to ios/Podfile:

platform :ios, '14.0'

Add camera permission to ios/Runner/Info.plist:

<key>NSCameraUsageDescription</key>
<string>Camera access is needed for pose detection</string>

Android Setup #

Update android/app/build.gradle:

android {
    defaultConfig {
        minSdkVersion 26
    }
}

Add camera permission to android/app/src/main/AndroidManifest.xml:

<uses-permission android:name="android.permission.CAMERA" />

Quick Start #

import 'package:flutter_pose_detection/flutter_pose_detection.dart';

// Create and initialize detector
final detector = NpuPoseDetector();
await detector.initialize();

// Detect pose from image
final imageBytes = await File('image.jpg').readAsBytes();
final result = await detector.detectPose(imageBytes);

if (result.hasPoses) {
  final pose = result.firstPose!;
  print('Detected ${pose.landmarks.length} landmarks');

  // Access specific landmarks
  final nose = pose.getLandmark(LandmarkType.nose);
  print('Nose at (${nose.x}, ${nose.y})');
}

// Clean up
detector.dispose();

Documentation #

License #

MIT License - see LICENSE

0
likes
0
points
82
downloads

Publisher

unverified uploader

Weekly Downloads

Hardware-accelerated pose detection using native ML frameworks (Apple Vision on iOS, TensorFlow Lite on Android). Detects 33 body landmarks in MediaPipe-compatible format.

Repository (GitHub)
View/report issues

Topics

#pose-detection #ml #machine-learning #computer-vision #npu

License

unknown (license)

Dependencies

flutter, plugin_platform_interface

More

Packages that depend on flutter_pose_detection

Packages that implement flutter_pose_detection