face_detection_tflite 4.2.1
face_detection_tflite: ^4.2.1 copied to clipboard
Face & landmark detection using on-device TFLite models.
import 'dart:io';
import 'dart:math';
import 'dart:ui' as ui;
import 'package:flutter/material.dart';
import 'package:flutter/foundation.dart';
import 'package:image_picker/image_picker.dart';
import 'package:flutter_colorpicker/flutter_colorpicker.dart';
import 'package:camera/camera.dart';
import 'package:camera_macos/camera_macos.dart';
import 'package:face_detection_tflite/face_detection_tflite.dart';
import 'package:opencv_dart/opencv_dart.dart' as cv;
Future<void> main() async {
// Ensure platform plugins (camera_macos, etc.) are registered before use.
WidgetsFlutterBinding.ensureInitialized();
runApp(const MaterialApp(
debugShowCheckedModeBanner: false,
home: HomeScreen(),
));
}
class HomeScreen extends StatelessWidget {
const HomeScreen({super.key});
@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar(
title: const Text('Face Detection Demo'),
backgroundColor: Colors.blue,
foregroundColor: Colors.white,
),
body: Center(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [
Icon(Icons.face, size: 100, color: Colors.blue[300]),
const SizedBox(height: 40),
const Text(
'Choose Detection Mode',
style: TextStyle(fontSize: 24, fontWeight: FontWeight.bold),
),
const SizedBox(height: 40),
ElevatedButton.icon(
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(builder: (context) => const Example()),
);
},
icon: const Icon(Icons.image, size: 32),
label: const Text('Still Image Detection',
style: TextStyle(fontSize: 18)),
style: ElevatedButton.styleFrom(
backgroundColor: Colors.blue,
foregroundColor: Colors.white,
padding:
const EdgeInsets.symmetric(horizontal: 40, vertical: 20),
minimumSize: const Size(300, 70),
),
),
const SizedBox(height: 20),
ElevatedButton.icon(
onPressed: () {
Navigator.push(
context,
MaterialPageRoute(
builder: (context) => const LiveCameraScreen()),
);
},
icon: const Icon(Icons.videocam, size: 32),
label: const Text('Live Camera Detection',
style: TextStyle(fontSize: 18)),
style: ElevatedButton.styleFrom(
backgroundColor: Colors.green,
foregroundColor: Colors.white,
padding:
const EdgeInsets.symmetric(horizontal: 40, vertical: 20),
minimumSize: const Size(300, 70),
),
),
],
),
),
);
}
}
class Example extends StatefulWidget {
const Example({super.key});
@override
State<Example> createState() => _ExampleState();
}
class _ExampleState extends State<Example> {
FaceDetectorIsolate? _faceDetectorIsolate;
Uint8List? _imageBytes;
List<Face> _faces = [];
Size? _originalSize;
bool _isLoading = false;
bool _showBoundingBoxes = true;
bool _showMesh = true;
bool _showLandmarks = true;
bool _showIrises = true;
bool _showEyeContours = true;
bool _showEyeMesh = true;
bool _showSettings = true;
bool _hasProcessedMesh = false;
bool _hasProcessedIris = false;
int? _detectionTimeMs;
int? _meshTimeMs;
int? _irisTimeMs;
int? _totalTimeMs;
Color _boundingBoxColor = const Color(0xFF00FFCC);
Color _landmarkColor = const Color(0xFF89CFF0);
Color _meshColor = const Color(0xFFF4C2C2);
Color _irisColor = const Color(0xFF22AAFF);
Color _eyeContourColor = const Color(0xFF22AAFF);
Color _eyeMeshColor = const Color(0xFFFFAA22);
double _boundingBoxThickness = 2.0;
double _landmarkSize = 3.0;
double _meshSize = 1.25;
double _eyeMeshSize = 0.8;
FaceDetectionModel _detectionModel = FaceDetectionModel.backCamera;
@override
void initState() {
super.initState();
_initFaceDetector();
}
Future<void> _initFaceDetector() async {
try {
_faceDetectorIsolate?.dispose();
_faceDetectorIsolate = await FaceDetectorIsolate.spawn(
model: _detectionModel,
);
} catch (_) {}
setState(() {});
}
@override
void dispose() {
_faceDetectorIsolate?.dispose();
super.dispose();
}
Future<void> _pickAndRun() async {
final ImagePicker picker = ImagePicker();
final XFile? picked =
await picker.pickImage(source: ImageSource.gallery, imageQuality: 100);
if (picked == null) return;
setState(() {
_imageBytes = null;
_faces = [];
_originalSize = null;
_isLoading = true;
_detectionTimeMs = null;
_meshTimeMs = null;
_irisTimeMs = null;
_totalTimeMs = null;
});
final Uint8List bytes = await picked.readAsBytes();
if (_faceDetectorIsolate == null || !_faceDetectorIsolate!.isReady) {
setState(() => _isLoading = false);
return;
}
await _processImage(bytes);
}
Future<void> _processImage(Uint8List bytes) async {
setState(() => _isLoading = true);
final DateTime totalStart = DateTime.now();
final FaceDetectionMode mode = _determineMode();
final DateTime detectionStart = DateTime.now();
final List<Face> faces =
await _faceDetectorIsolate!.detectFaces(bytes, mode: mode);
final DateTime detectionEnd = DateTime.now();
// Get image size from Face or decode it
Size decodedSize;
if (faces.isNotEmpty) {
decodedSize = faces.first.originalSize;
} else {
// Decode image to get dimensions when no faces detected
final codec = await ui.instantiateImageCodec(bytes);
final frame = await codec.getNextFrame();
decodedSize =
Size(frame.image.width.toDouble(), frame.image.height.toDouble());
frame.image.dispose();
}
if (!mounted) return;
final DateTime totalEnd = DateTime.now();
final int totalTime = totalEnd.difference(totalStart).inMilliseconds;
final int detectionTime =
detectionEnd.difference(detectionStart).inMilliseconds;
int? meshTime;
int? irisTime;
if (_showMesh || _showIrises || _showEyeContours || _showEyeMesh) {
final int extraTime = totalTime - detectionTime;
if (_showMesh && (_showIrises || _showEyeContours || _showEyeMesh)) {
meshTime = (extraTime * 0.6).round();
irisTime = (extraTime * 0.4).round();
} else if (_showMesh) {
meshTime = extraTime;
} else if (_showIrises || _showEyeContours || _showEyeMesh) {
irisTime = extraTime;
}
}
setState(() {
_imageBytes = bytes;
_originalSize = decodedSize;
_faces = faces;
_hasProcessedMesh =
mode == FaceDetectionMode.standard || mode == FaceDetectionMode.full;
_hasProcessedIris = mode == FaceDetectionMode.full;
_isLoading = false;
_detectionTimeMs = detectionTime;
_meshTimeMs = meshTime;
_irisTimeMs = irisTime;
_totalTimeMs = totalTime;
});
}
FaceDetectionMode _determineMode() {
if (_showIrises || _showEyeContours || _showEyeMesh) {
return FaceDetectionMode.full;
} else if (_showMesh) {
return FaceDetectionMode.standard;
} else {
return FaceDetectionMode.fast;
}
}
Future<void> _onFeatureToggle(String feature, bool newValue) async {
final FaceDetectionMode oldMode = _determineMode();
if (feature == 'mesh') {
setState(() => _showMesh = newValue);
} else if (feature == 'iris') {
setState(() => _showIrises = newValue);
} else if (feature == 'eyeContour') {
setState(() => _showEyeContours = newValue);
} else if (feature == 'eyeMesh') {
setState(() => _showEyeMesh = newValue);
}
final FaceDetectionMode newMode = _determineMode();
if (_imageBytes != null && oldMode != newMode) {
await _processImage(_imageBytes!);
}
}
void _pickColor(
String label, Color currentColor, ValueChanged<Color> onColorChanged) {
showDialog(
context: context,
builder: (context) {
Color tempColor = currentColor;
return AlertDialog(
title: Text('Pick $label Color'),
content: SingleChildScrollView(
child: ColorPicker(
pickerColor: currentColor,
onColorChanged: (color) {
tempColor = color;
},
pickerAreaHeightPercent: 0.8,
displayThumbColor: true,
enableAlpha: true,
labelTypes: const [ColorLabelType.hex],
),
),
actions: [
TextButton(
onPressed: () => Navigator.of(context).pop(),
child: const Text('Cancel'),
),
TextButton(
onPressed: () {
onColorChanged(tempColor);
Navigator.of(context).pop();
},
child: const Text('Select'),
),
],
);
},
);
}
Widget _buildTimingRow(String label, int milliseconds, Color color,
{bool isBold = false}) {
return Padding(
padding: const EdgeInsets.symmetric(vertical: 4),
child: Row(
mainAxisAlignment: MainAxisAlignment.spaceBetween,
children: [
Row(
children: [
Container(
width: 12,
height: 12,
decoration: BoxDecoration(
color: color,
shape: BoxShape.circle,
),
),
const SizedBox(width: 8),
Text(
label,
style: TextStyle(
fontWeight: isBold ? FontWeight.bold : FontWeight.normal,
fontSize: isBold ? 15 : 14,
),
),
],
),
Text(
'${milliseconds}ms',
style: TextStyle(
fontWeight: isBold ? FontWeight.bold : FontWeight.normal,
fontSize: isBold ? 15 : 14,
color: color,
),
),
],
),
);
}
Widget _buildPerformanceIndicator() {
if (_totalTimeMs == null) return const SizedBox.shrink();
String performance;
Color color;
IconData icon;
if (_totalTimeMs! < 200) {
performance = 'Excellent';
color = Colors.green;
icon = Icons.speed;
} else if (_totalTimeMs! < 500) {
performance = 'Good';
color = Colors.lightGreen;
icon = Icons.thumb_up;
} else if (_totalTimeMs! < 1000) {
performance = 'Fair';
color = Colors.orange;
icon = Icons.warning_amber;
} else {
performance = 'Slow';
color = Colors.red;
icon = Icons.hourglass_bottom;
}
return Container(
padding: const EdgeInsets.symmetric(horizontal: 12, vertical: 6),
decoration: BoxDecoration(
color: color.withAlpha(26),
borderRadius: BorderRadius.circular(8),
border: Border.all(color: color.withAlpha(77)),
),
child: Row(
mainAxisSize: MainAxisSize.min,
children: [
Icon(icon, size: 16, color: color),
const SizedBox(width: 6),
Text(
performance,
style: TextStyle(
color: color,
fontWeight: FontWeight.bold,
fontSize: 14,
),
),
],
),
);
}
Widget _buildFeatureStatus() {
if (_imageBytes == null) return const SizedBox.shrink();
return Card(
margin: const EdgeInsets.symmetric(horizontal: 16, vertical: 8),
elevation: 2,
child: Padding(
padding: const EdgeInsets.all(12),
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: [
Row(
children: [
const Icon(Icons.info_outline, size: 20, color: Colors.blue),
const SizedBox(width: 8),
const Text(
'Processing Status',
style: TextStyle(fontWeight: FontWeight.bold, fontSize: 16),
),
],
),
const SizedBox(height: 8),
_buildStatusRow('Detection', true, Colors.green),
_buildStatusRow('Mesh', _hasProcessedMesh,
_showMesh ? Colors.green : Colors.grey),
_buildStatusRow('Iris', _hasProcessedIris,
_showIrises ? Colors.green : Colors.grey),
if (_detectionTimeMs != null ||
_meshTimeMs != null ||
_irisTimeMs != null ||
_totalTimeMs != null) ...[
const Divider(height: 16),
if (_detectionTimeMs != null)
_buildTimingRow('Detection', _detectionTimeMs!, Colors.green),
if (_meshTimeMs != null)
_buildTimingRow('Mesh Refinement', _meshTimeMs!, Colors.pink),
if (_irisTimeMs != null)
_buildTimingRow(
'Iris Refinement', _irisTimeMs!, Colors.blueAccent),
if (_totalTimeMs != null)
_buildTimingRow('Inference Time', _totalTimeMs!, Colors.blue,
isBold: true),
const SizedBox(height: 8),
if (_totalTimeMs != null) _buildPerformanceIndicator(),
],
],
),
),
);
}
Widget _buildStatusRow(String label, bool processed, Color color) {
return Padding(
padding: const EdgeInsets.symmetric(vertical: 4),
child: Row(
children: [
Icon(
processed ? Icons.check_circle : Icons.pending,
size: 16,
color: color,
),
const SizedBox(width: 8),
Text(
label,
style: const TextStyle(fontSize: 14),
),
const Spacer(),
Text(
processed ? 'Processed' : 'Skipped',
style: TextStyle(
fontSize: 12,
color: color,
fontWeight: FontWeight.w500,
),
),
],
),
);
}
@override
Widget build(BuildContext context) {
final bool hasImage = _imageBytes != null && _originalSize != null;
return Scaffold(
body: Stack(
children: [
Column(
children: [
if (_showSettings)
Container(
padding:
const EdgeInsets.symmetric(horizontal: 16, vertical: 12),
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: [
// Top buttons row
Row(
children: [
ElevatedButton.icon(
onPressed: _pickAndRun,
icon: const Icon(Icons.image, size: 18),
label: const Text('Pick Image'),
style: ElevatedButton.styleFrom(
backgroundColor: Colors.blue,
foregroundColor: Colors.white,
padding: const EdgeInsets.symmetric(
horizontal: 12, vertical: 8),
),
),
const SizedBox(width: 8),
ElevatedButton.icon(
onPressed: () =>
setState(() => _showSettings = false),
icon: const Icon(Icons.visibility_off, size: 18),
label: const Text('Hide'),
style: ElevatedButton.styleFrom(
backgroundColor: Colors.black,
foregroundColor: Colors.white,
padding: const EdgeInsets.symmetric(
horizontal: 12, vertical: 8),
),
),
const SizedBox(width: 8),
Expanded(
child: Container(
padding: const EdgeInsets.symmetric(
horizontal: 12, vertical: 4),
decoration: BoxDecoration(
border: Border.all(color: Colors.grey.shade300),
borderRadius: BorderRadius.circular(8),
),
child: Row(
mainAxisSize: MainAxisSize.min,
children: [
const Icon(Icons.tune, size: 16),
const SizedBox(width: 6),
const Text('Model:',
style: TextStyle(fontSize: 13)),
const SizedBox(width: 4),
Expanded(
child: DropdownButton<FaceDetectionModel>(
value: _detectionModel,
underline: const SizedBox(),
isExpanded: true,
style: const TextStyle(
fontSize: 13, color: Colors.black),
items: const [
DropdownMenuItem(
value: FaceDetectionModel.frontCamera,
child: Text('Front'),
),
DropdownMenuItem(
value: FaceDetectionModel.backCamera,
child: Text('Back'),
),
DropdownMenuItem(
value: FaceDetectionModel.shortRange,
child: Text('Short'),
),
DropdownMenuItem(
value: FaceDetectionModel.full,
child: Text('Full Range'),
),
DropdownMenuItem(
value: FaceDetectionModel.fullSparse,
child: Text('Full Sparse'),
),
],
onChanged: (value) async {
if (value != null &&
value != _detectionModel) {
setState(
() => _detectionModel = value);
await _initFaceDetector();
if (_imageBytes != null) {
await _processImage(_imageBytes!);
}
}
},
),
),
],
),
),
),
],
),
const SizedBox(height: 12),
// Checkboxes in a compact grid
Wrap(
spacing: 8,
runSpacing: 4,
children: [
_buildCheckbox(
'Bounding Boxes',
_showBoundingBoxes,
(value) => setState(
() => _showBoundingBoxes = value ?? false)),
_buildCheckbox(
'Mesh',
_showMesh,
(value) =>
_onFeatureToggle('mesh', value ?? false)),
_buildCheckbox(
'Landmarks',
_showLandmarks,
(value) => setState(
() => _showLandmarks = value ?? false)),
_buildCheckbox(
'Irises',
_showIrises,
(value) =>
_onFeatureToggle('iris', value ?? false)),
_buildCheckbox(
'Eye Contour',
_showEyeContours,
(value) => _onFeatureToggle(
'eyeContour', value ?? false)),
_buildCheckbox(
'Eye Mesh',
_showEyeMesh,
(value) =>
_onFeatureToggle('eyeMesh', value ?? false)),
],
),
const SizedBox(height: 8),
const Divider(height: 1),
const SizedBox(height: 8),
// Color pickers in a compact grid
Wrap(
spacing: 6,
runSpacing: 6,
children: [
_buildColorButton(
'BBox',
_boundingBoxColor,
(color) =>
setState(() => _boundingBoxColor = color)),
_buildColorButton(
'Landmarks',
_landmarkColor,
(color) =>
setState(() => _landmarkColor = color)),
_buildColorButton('Mesh', _meshColor,
(color) => setState(() => _meshColor = color)),
_buildColorButton('Irises', _irisColor,
(color) => setState(() => _irisColor = color)),
_buildColorButton(
'Eye Contour',
_eyeContourColor,
(color) =>
setState(() => _eyeContourColor = color)),
_buildColorButton('Eye Mesh', _eyeMeshColor,
(color) => setState(() => _eyeMeshColor = color)),
],
),
const SizedBox(height: 8),
const Divider(height: 1),
const SizedBox(height: 4),
// Sliders in a more compact layout
_buildSlider(
'BBox Thickness',
_boundingBoxThickness,
0.5,
10.0,
(value) =>
setState(() => _boundingBoxThickness = value)),
_buildSlider('Landmark Size', _landmarkSize, 0.5, 15.0,
(value) => setState(() => _landmarkSize = value)),
_buildSlider('Mesh Size', _meshSize, 0.1, 10.0,
(value) => setState(() => _meshSize = value)),
_buildSlider('Eye Mesh Size', _eyeMeshSize, 0.1, 10.0,
(value) => setState(() => _eyeMeshSize = value)),
],
),
),
_buildFeatureStatus(),
Expanded(
child: Center(
child: hasImage
? LayoutBuilder(
builder: (context, constraints) {
final fitted = applyBoxFit(
BoxFit.contain,
_originalSize!,
Size(constraints.maxWidth, constraints.maxHeight),
);
final Size renderSize = fitted.destination;
final Rect imageRect = Alignment.center.inscribe(
renderSize,
Offset.zero &
Size(constraints.maxWidth,
constraints.maxHeight),
);
return Stack(
children: [
Positioned.fromRect(
rect: imageRect,
child: SizedBox.fromSize(
size: renderSize,
child: Image.memory(
_imageBytes!,
fit: BoxFit.fill,
),
),
),
Positioned(
left: imageRect.left,
top: imageRect.top,
width: imageRect.width,
height: imageRect.height,
child: CustomPaint(
size:
Size(imageRect.width, imageRect.height),
painter: _DetectionsPainter(
faces: _faces,
imageRectOnCanvas: Rect.fromLTWH(0, 0,
imageRect.width, imageRect.height),
originalImageSize: _originalSize!,
showBoundingBoxes: _showBoundingBoxes,
showMesh: _showMesh,
showLandmarks: _showLandmarks,
showIrises: _showIrises,
showEyeContours: _showEyeContours,
showEyeMesh: _showEyeMesh,
boundingBoxColor: _boundingBoxColor,
landmarkColor: _landmarkColor,
meshColor: _meshColor,
irisColor: _irisColor,
eyeContourColor: _eyeContourColor,
eyeMeshColor: _eyeMeshColor,
boundingBoxThickness:
_boundingBoxThickness,
landmarkSize: _landmarkSize,
meshSize: _meshSize,
eyeMeshSize: _eyeMeshSize,
),
),
),
],
);
},
)
: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [
Icon(Icons.image_outlined,
size: 64, color: Colors.grey[400]),
const SizedBox(height: 16),
Text(
'No image selected',
style: TextStyle(
fontSize: 18, color: Colors.grey[600]),
),
const SizedBox(height: 8),
Text(
'Pick an image to start detection',
style: TextStyle(
fontSize: 14, color: Colors.grey[500]),
),
],
),
),
),
],
),
if (!_showSettings && hasImage)
Positioned(
top: 50,
right: 16,
child: FloatingActionButton(
mini: true,
onPressed: () => setState(() => _showSettings = true),
backgroundColor: Colors.black.withAlpha(179),
child: const Icon(Icons.settings, color: Colors.white),
),
),
if (_isLoading)
Container(
color: Colors.black54,
child: const Center(
child: CircularProgressIndicator(),
),
),
],
),
);
}
Widget _buildCheckbox(
String label, bool value, ValueChanged<bool?> onChanged) {
return InkWell(
onTap: () => onChanged(!value),
child: Row(
mainAxisSize: MainAxisSize.min,
children: [
SizedBox(
width: 24,
height: 24,
child: Checkbox(
value: value,
onChanged: onChanged,
materialTapTargetSize: MaterialTapTargetSize.shrinkWrap,
visualDensity: VisualDensity.compact,
),
),
const SizedBox(width: 4),
Text(label, style: const TextStyle(fontSize: 12)),
],
),
);
}
Widget _buildColorButton(
String label, Color color, ValueChanged<Color> onColorChanged) {
return InkWell(
onTap: () => _pickColor(label, color, onColorChanged),
borderRadius: BorderRadius.circular(6),
child: Container(
padding: const EdgeInsets.symmetric(horizontal: 8, vertical: 6),
decoration: BoxDecoration(
border: Border.all(color: Colors.grey.shade300),
borderRadius: BorderRadius.circular(6),
),
child: Row(
mainAxisSize: MainAxisSize.min,
children: [
Container(
width: 18,
height: 18,
decoration: BoxDecoration(
color: color,
border: Border.all(color: Colors.grey.shade400),
borderRadius: BorderRadius.circular(3),
),
),
const SizedBox(width: 6),
Text(label, style: const TextStyle(fontSize: 12)),
const SizedBox(width: 2),
const Icon(Icons.arrow_drop_down, size: 16),
],
),
),
);
}
Widget _buildSlider(String label, double value, double min, double max,
ValueChanged<double> onChanged) {
return Padding(
padding: const EdgeInsets.symmetric(vertical: 2.0),
child: Row(
children: [
SizedBox(
width: 120,
child: Text(label, style: const TextStyle(fontSize: 12)),
),
Expanded(
child: SliderTheme(
data: SliderTheme.of(context).copyWith(
trackHeight: 2.0,
thumbShape:
const RoundSliderThumbShape(enabledThumbRadius: 6.0),
overlayShape:
const RoundSliderOverlayShape(overlayRadius: 12.0),
),
child: Slider(
value: value,
min: min,
max: max,
divisions: ((max - min) * 10).round(),
label: value.toStringAsFixed(1),
onChanged: onChanged,
),
),
),
SizedBox(
width: 35,
child: Text(
value.toStringAsFixed(1),
style: const TextStyle(fontSize: 11),
textAlign: TextAlign.right,
),
),
],
),
);
}
}
class _DetectionsPainter extends CustomPainter {
final List<Face> faces;
final Rect imageRectOnCanvas;
final Size originalImageSize;
final bool showBoundingBoxes;
final bool showMesh;
final bool showLandmarks;
final bool showIrises;
final bool showEyeContours;
final bool showEyeMesh;
final Color boundingBoxColor;
final Color landmarkColor;
final Color meshColor;
final Color irisColor;
final Color eyeContourColor;
final Color eyeMeshColor;
final double boundingBoxThickness;
final double landmarkSize;
final double meshSize;
final double eyeMeshSize;
_DetectionsPainter({
required this.faces,
required this.imageRectOnCanvas,
required this.originalImageSize,
required this.showBoundingBoxes,
required this.showMesh,
required this.showLandmarks,
required this.showIrises,
required this.showEyeContours,
required this.showEyeMesh,
required this.boundingBoxColor,
required this.landmarkColor,
required this.meshColor,
required this.irisColor,
required this.eyeContourColor,
required this.eyeMeshColor,
required this.boundingBoxThickness,
required this.landmarkSize,
required this.meshSize,
required this.eyeMeshSize,
});
@override
void paint(Canvas canvas, Size size) {
if (faces.isEmpty) return;
final ui.Paint boxPaint = Paint()
..style = PaintingStyle.stroke
..strokeWidth = boundingBoxThickness
..color = boundingBoxColor;
final ui.Paint detKpPaint = Paint()
..style = PaintingStyle.fill
..color = landmarkColor;
final ui.Paint meshPaint = Paint()
..style = PaintingStyle.fill
..color = meshColor;
final ui.Paint irisFill = Paint()
..style = PaintingStyle.fill
..color = irisColor.withAlpha(153)
..blendMode = BlendMode.srcOver;
final ui.Paint irisStroke = Paint()
..style = PaintingStyle.stroke
..strokeWidth = 1.5
..color = irisColor.withAlpha(230);
final double ox = imageRectOnCanvas.left;
final double oy = imageRectOnCanvas.top;
final double scaleX = imageRectOnCanvas.width / originalImageSize.width;
final double scaleY = imageRectOnCanvas.height / originalImageSize.height;
for (final Face face in faces) {
if (showBoundingBoxes) {
final BoundingBox boundingBox = face.boundingBox;
final ui.Rect rect = Rect.fromLTRB(
ox + boundingBox.topLeft.x * scaleX,
oy + boundingBox.topLeft.y * scaleY,
ox + boundingBox.bottomRight.x * scaleX,
oy + boundingBox.bottomRight.y * scaleY,
);
canvas.drawRect(rect, boxPaint);
}
if (showLandmarks) {
// Iterate over all landmarks using .values
// You can also access specific landmarks using named properties:
// face.landmarks.leftEye, face.landmarks.rightEye, etc.
for (final p in face.landmarks.values) {
canvas.drawCircle(
Offset(ox + p.x * scaleX, oy + p.y * scaleY),
landmarkSize,
detKpPaint,
);
}
}
if (showMesh) {
final FaceMesh? faceMesh = face.mesh;
if (faceMesh != null) {
final mesh = faceMesh.points;
final double imgArea =
imageRectOnCanvas.width * imageRectOnCanvas.height;
final double radius = meshSize + sqrt(imgArea) / 1000.0;
for (final p in mesh) {
canvas.drawCircle(
Offset(ox + p.x * scaleX, oy + p.y * scaleY),
radius,
meshPaint,
);
}
}
}
if (showIrises || showEyeContours || showEyeMesh) {
final eyePair = face.eyes;
if (eyePair != null) {
for (final iris in [eyePair.leftEye, eyePair.rightEye]) {
if (iris == null) continue;
// Draw iris (center + contour as oval)
if (showIrises) {
// Build bounding box from iris center + iris contour points
final allIrisPoints = [iris.irisCenter, ...iris.irisContour];
double minX = allIrisPoints.first.x, maxX = allIrisPoints.first.x;
double minY = allIrisPoints.first.y, maxY = allIrisPoints.first.y;
for (final p in allIrisPoints) {
if (p.x < minX) minX = p.x;
if (p.x > maxX) maxX = p.x;
if (p.y < minY) minY = p.y;
if (p.y > maxY) maxY = p.y;
}
final cx = ox + ((minX + maxX) * 0.5) * scaleX;
final cy = oy + ((minY + maxY) * 0.5) * scaleY;
final rx = (maxX - minX) * 0.5 * scaleX;
final ry = (maxY - minY) * 0.5 * scaleY;
final oval = Rect.fromCenter(
center: Offset(cx, cy), width: rx * 2, height: ry * 2);
canvas.drawOval(oval, irisFill);
canvas.drawOval(oval, irisStroke);
}
// Draw eye contour landmarks
if (showEyeContours && iris.mesh.isNotEmpty) {
// Draw the visible eyeball contour (eyelid outline) as connected lines
final Paint eyeOutlinePaint = Paint()
..color = eyeContourColor
..style = PaintingStyle.stroke
..strokeWidth = 1.5;
final eyelidContour = iris.contour;
for (final connection in eyeLandmarkConnections) {
if (connection[0] < eyelidContour.length &&
connection[1] < eyelidContour.length) {
final p1 = eyelidContour[connection[0]];
final p2 = eyelidContour[connection[1]];
canvas.drawLine(
Offset(ox + p1.x * scaleX, oy + p1.y * scaleY),
Offset(ox + p2.x * scaleX, oy + p2.y * scaleY),
eyeOutlinePaint,
);
}
}
}
// Draw all 71 eye mesh points as small dots
// (includes eyebrows and tracking halos)
if (showEyeMesh && iris.mesh.isNotEmpty) {
final Paint eyeMeshPointPaint = Paint()
..color = eyeMeshColor
..style = PaintingStyle.fill;
for (final p in iris.mesh) {
final canvasX = ox + p.x * scaleX;
final canvasY = oy + p.y * scaleY;
canvas.drawCircle(
Offset(canvasX, canvasY), eyeMeshSize, eyeMeshPointPaint);
}
}
}
}
}
}
}
@override
bool shouldRepaint(covariant _DetectionsPainter old) {
return old.faces != faces ||
old.imageRectOnCanvas != imageRectOnCanvas ||
old.originalImageSize != originalImageSize ||
old.showBoundingBoxes != showBoundingBoxes ||
old.showMesh != showMesh ||
old.showLandmarks != showLandmarks ||
old.showIrises != showIrises ||
old.showEyeContours != showEyeContours ||
old.showEyeMesh != showEyeMesh ||
old.boundingBoxColor != boundingBoxColor ||
old.landmarkColor != landmarkColor ||
old.meshColor != meshColor ||
old.irisColor != irisColor ||
old.eyeContourColor != eyeContourColor ||
old.eyeMeshColor != eyeMeshColor ||
old.boundingBoxThickness != boundingBoxThickness ||
old.landmarkSize != landmarkSize ||
old.meshSize != meshSize ||
old.eyeMeshSize != eyeMeshSize;
}
}
class LiveCameraScreen extends StatefulWidget {
const LiveCameraScreen({super.key});
@override
State<LiveCameraScreen> createState() => _LiveCameraScreenState();
}
class _LiveCameraScreenState extends State<LiveCameraScreen> {
bool get _isMacOS => !kIsWeb && Platform.isMacOS;
CameraController? _cameraController;
CameraMacOSController? _macCameraController;
Size? _macPreviewSize;
FaceDetectorIsolate? _faceDetectorIsolate;
List<Face> _faces = [];
Size? _imageSize;
int? _sensorOrientation;
bool _isFrontCamera = false;
bool _isProcessing = false;
bool _isInitialized = false;
int _frameCounter = 0;
int _processEveryNFrames =
3; // Process every 3rd frame for better performance
int _detectionTimeMs = 0;
int _fps = 0;
DateTime? _lastFpsUpdate;
int _framesSinceLastUpdate = 0;
// Detection settings
FaceDetectionMode _detectionMode = FaceDetectionMode.fast;
FaceDetectionModel _detectionModel = FaceDetectionModel.frontCamera;
@override
void initState() {
super.initState();
_initCamera();
}
Future<void> _initCamera() async {
try {
// Initialize face detector isolate with selected model
_faceDetectorIsolate = await FaceDetectorIsolate.spawn(
model: _detectionModel,
);
if (_isMacOS) {
if (mounted) {
setState(() {
_isInitialized = true;
});
}
return;
}
// Get available cameras
final cameras = await availableCameras();
if (cameras.isEmpty) {
if (mounted) {
ScaffoldMessenger.of(context).showSnackBar(
const SnackBar(content: Text('No cameras available')),
);
}
return;
}
// Prefer the front camera on mobile; fall back to the first camera
final camera = cameras.firstWhere(
(c) => c.lensDirection == CameraLensDirection.front,
orElse: () => cameras.first,
);
_cameraController = CameraController(
camera,
ResolutionPreset
.medium, // Use medium for balance between quality and speed
enableAudio: false,
imageFormatGroup: ImageFormatGroup.yuv420, // Efficient format
);
await _cameraController!.initialize();
if (!mounted) return;
setState(() {
_isInitialized = true;
_sensorOrientation = _cameraController!.description.sensorOrientation;
_isFrontCamera = _cameraController!.description.lensDirection ==
CameraLensDirection.front;
});
// Start image stream
_cameraController!.startImageStream(_processCameraImage);
} catch (e) {
if (mounted) {
ScaffoldMessenger.of(context).showSnackBar(
SnackBar(content: Text('Error initializing camera: $e')),
);
}
}
}
Future<void> _processCameraImage(CameraImage image) async {
_frameCounter++;
// Calculate FPS
_framesSinceLastUpdate++;
final now = DateTime.now();
if (_lastFpsUpdate != null) {
final diff = now.difference(_lastFpsUpdate!).inMilliseconds;
if (diff >= 1000) {
setState(() {
_fps = (_framesSinceLastUpdate * 1000 / diff).round();
_framesSinceLastUpdate = 0;
_lastFpsUpdate = now;
});
}
} else {
_lastFpsUpdate = now;
}
// Skip frames for better performance
if (_frameCounter % _processEveryNFrames != 0) return;
// Skip if already processing
if (_isProcessing) return;
_isProcessing = true;
try {
final startTime = DateTime.now();
// Convert CameraImage to cv.Mat for OpenCV-accelerated processing
final mat = await _convertCameraImageToMat(image);
if (mat == null || _faceDetectorIsolate == null) {
_isProcessing = false;
return;
}
// Run face detection in background isolate
final faces = await _faceDetectorIsolate!.detectFacesFromMat(
mat,
mode: _detectionMode,
);
// Dispose the Mat after detection
mat.dispose();
final endTime = DateTime.now();
final detectionTime = endTime.difference(startTime).inMilliseconds;
if (mounted) {
// Image size is the size after rotation (if any)
final bool needsRotation = _sensorOrientation == 90 &&
MediaQuery.of(context).orientation == Orientation.portrait;
// When rotated -90°, width and height swap
final Size processedSize = needsRotation
? Size(image.height.toDouble(), image.width.toDouble())
: Size(image.width.toDouble(), image.height.toDouble());
setState(() {
_faces = faces;
_imageSize = processedSize;
_detectionTimeMs = detectionTime;
});
}
} catch (e) {
// Silently handle errors during processing
} finally {
_isProcessing = false;
}
}
/// Converts CameraImage (YUV420) to cv.Mat (BGR) for OpenCV processing.
///
/// This avoids the JPEG encode/decode overhead by creating cv.Mat directly.
Future<cv.Mat?> _convertCameraImageToMat(CameraImage image) async {
try {
final int width = image.width;
final int height = image.height;
final int yRowStride = image.planes[0].bytesPerRow;
final int yPixelStride = image.planes[0].bytesPerPixel ?? 1;
// Allocate BGR buffer for OpenCV (3 bytes per pixel)
final bgrBytes = Uint8List(width * height * 3);
if (image.planes.length == 2) {
// iOS NV12 format
final int uvRowStride = image.planes[1].bytesPerRow;
final int uvPixelStride = image.planes[1].bytesPerPixel ?? 2;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
final int uvIndex =
uvPixelStride * (x ~/ 2) + uvRowStride * (y ~/ 2);
final int index = y * yRowStride + x * yPixelStride;
final yp = image.planes[0].bytes[index];
final up = image.planes[1].bytes[uvIndex];
final vp = image.planes[1].bytes[uvIndex + 1];
// Convert YUV to RGB
int r = (yp + vp * 1436 / 1024 - 179).round().clamp(0, 255);
int g = (yp - up * 46549 / 131072 + 44 - vp * 93604 / 131072 + 91)
.round()
.clamp(0, 255);
int b = (yp + up * 1814 / 1024 - 227).round().clamp(0, 255);
// Write BGR (OpenCV format)
final int bgrIdx = (y * width + x) * 3;
bgrBytes[bgrIdx] = b;
bgrBytes[bgrIdx + 1] = g;
bgrBytes[bgrIdx + 2] = r;
}
}
} else if (image.planes.length >= 3) {
// Android I420 format
final int uvRowStride = image.planes[1].bytesPerRow;
final int uvPixelStride = image.planes[1].bytesPerPixel ?? 1;
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
final int uvIndex =
uvPixelStride * (x ~/ 2) + uvRowStride * (y ~/ 2);
final int index = y * yRowStride + x * yPixelStride;
final yp = image.planes[0].bytes[index];
final up = image.planes[1].bytes[uvIndex];
final vp = image.planes[2].bytes[uvIndex];
// Convert YUV to RGB
int r = (yp + vp * 1436 / 1024 - 179).round().clamp(0, 255);
int g = (yp - up * 46549 / 131072 + 44 - vp * 93604 / 131072 + 91)
.round()
.clamp(0, 255);
int b = (yp + up * 1814 / 1024 - 227).round().clamp(0, 255);
// Write BGR (OpenCV format)
final int bgrIdx = (y * width + x) * 3;
bgrBytes[bgrIdx] = b;
bgrBytes[bgrIdx + 1] = g;
bgrBytes[bgrIdx + 2] = r;
}
}
} else {
return null;
}
// Create cv.Mat from BGR bytes
cv.Mat mat = cv.Mat.fromList(height, width, cv.MatType.CV_8UC3, bgrBytes);
// Rotate image for portrait mode so face detector sees upright faces
final bool needsRotation = _sensorOrientation == 90 &&
MediaQuery.of(context).orientation == Orientation.portrait;
if (needsRotation) {
// Rotate 90° counter-clockwise
final rotated = cv.rotate(mat, cv.ROTATE_90_COUNTERCLOCKWISE);
mat.dispose();
return rotated;
}
return mat;
} catch (e) {
return null;
}
}
/// Converts macOS CameraImageData (ARGB) to cv.Mat (BGR) for OpenCV processing.
cv.Mat? _convertMacImageToMat(CameraImageData image) {
try {
final bytes = image.bytes;
final stride = image.bytesPerRow;
final width = image.width;
final height = image.height;
// Allocate BGR buffer for OpenCV (3 bytes per pixel)
final bgrBytes = Uint8List(width * height * 3);
for (int y = 0; y < height; y++) {
final rowStart = y * stride;
for (int x = 0; x < width; x++) {
final pixelStart = rowStart + x * 4;
if (pixelStart + 3 >= bytes.length) break;
// macOS uses ARGB format
final r = bytes[pixelStart + 1];
final g = bytes[pixelStart + 2];
final b = bytes[pixelStart + 3];
// Write BGR (OpenCV format)
final int bgrIdx = (y * width + x) * 3;
bgrBytes[bgrIdx] = b;
bgrBytes[bgrIdx + 1] = g;
bgrBytes[bgrIdx + 2] = r;
}
}
return cv.Mat.fromList(height, width, cv.MatType.CV_8UC3, bgrBytes);
} catch (_) {
return null;
}
}
@override
void dispose() {
if (_isMacOS) {
_macCameraController?.stopImageStream();
_macCameraController?.destroy();
} else {
_cameraController?.stopImageStream();
_cameraController?.dispose();
}
_faceDetectorIsolate?.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
if (_isMacOS) {
return _buildMacOSCamera(context);
}
if (!_isInitialized || _cameraController == null) {
return Scaffold(
appBar: AppBar(
title: const Text('Live Camera Detection'),
backgroundColor: Colors.green,
foregroundColor: Colors.white,
),
body: const Center(
child: CircularProgressIndicator(),
),
);
}
final cameraAspectRatio = _cameraController!.value.aspectRatio;
final deviceOrientation = MediaQuery.of(context).orientation;
// Determine if we need to swap aspect ratio for portrait mode
// On iOS with sensor orientation 90, the camera is landscape but device may be portrait
final bool needsAspectSwap =
_sensorOrientation == 90 && deviceOrientation == Orientation.portrait;
final double displayAspectRatio =
needsAspectSwap ? 1.0 / cameraAspectRatio : cameraAspectRatio;
return Scaffold(
appBar: AppBar(
title: const Text('Live Camera Detection'),
backgroundColor: Colors.green,
foregroundColor: Colors.white,
actions: [
// Detection mode dropdown
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 8.0),
child: DropdownButton<FaceDetectionMode>(
value: _detectionMode,
dropdownColor: Colors.green[800],
style: const TextStyle(color: Colors.white, fontSize: 14),
underline: const SizedBox(),
items: const [
DropdownMenuItem(
value: FaceDetectionMode.fast,
child: Text('Fast'),
),
DropdownMenuItem(
value: FaceDetectionMode.standard,
child: Text('Standard'),
),
DropdownMenuItem(
value: FaceDetectionMode.full,
child: Text('Full'),
),
],
onChanged: (value) {
if (value != null) {
setState(() => _detectionMode = value);
}
},
),
),
),
// Detection model dropdown
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 8.0),
child: DropdownButton<FaceDetectionModel>(
value: _detectionModel,
dropdownColor: Colors.green[800],
style: const TextStyle(color: Colors.white, fontSize: 14),
underline: const SizedBox(),
items: const [
DropdownMenuItem(
value: FaceDetectionModel.frontCamera,
child: Text('Front'),
),
DropdownMenuItem(
value: FaceDetectionModel.backCamera,
child: Text('Back'),
),
DropdownMenuItem(
value: FaceDetectionModel.shortRange,
child: Text('Short'),
),
DropdownMenuItem(
value: FaceDetectionModel.full,
child: Text('Full Range'),
),
DropdownMenuItem(
value: FaceDetectionModel.fullSparse,
child: Text('Full Sparse'),
),
],
onChanged: (value) async {
if (value != null && value != _detectionModel) {
setState(() => _detectionModel = value);
// Reinitialize detector isolate with new model
_faceDetectorIsolate?.dispose();
_faceDetectorIsolate = await FaceDetectorIsolate.spawn(
model: _detectionModel,
);
}
},
),
),
),
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 16.0),
child: Text(
'FPS: $_fps | ${_detectionTimeMs}ms',
style: const TextStyle(fontSize: 14),
),
),
),
],
),
body: Stack(
fit: StackFit.expand,
children: [
Center(
child: AspectRatio(
aspectRatio: displayAspectRatio,
child: Stack(
fit: StackFit.expand,
children: [
CameraPreview(_cameraController!),
if (_imageSize != null)
CustomPaint(
painter: _CameraDetectionPainter(
faces: _faces,
imageSize: _imageSize!,
cameraAspectRatio: cameraAspectRatio,
displayAspectRatio: displayAspectRatio,
detectionMode: _detectionMode,
sensorOrientation: _sensorOrientation ?? 0,
deviceOrientation: deviceOrientation,
isFrontCamera: _isFrontCamera,
),
),
],
),
),
),
// Info panel
Positioned(
bottom: 20,
left: 0,
right: 0,
child: Center(
child: Container(
padding:
const EdgeInsets.symmetric(horizontal: 20, vertical: 12),
decoration: BoxDecoration(
color: Colors.black.withAlpha(179),
borderRadius: BorderRadius.circular(8),
),
child: Column(
mainAxisSize: MainAxisSize.min,
children: [
Text(
'Faces Detected: ${_faces.length}',
style: const TextStyle(
color: Colors.white,
fontSize: 18,
fontWeight: FontWeight.bold,
),
),
const SizedBox(height: 8),
Row(
mainAxisSize: MainAxisSize.min,
children: [
const Text(
'Frame Skip: ',
style: TextStyle(color: Colors.white70, fontSize: 14),
),
DropdownButton<int>(
value: _processEveryNFrames,
dropdownColor: Colors.black87,
style: const TextStyle(color: Colors.white),
items: [1, 2, 3, 4, 5]
.map((n) => DropdownMenuItem(
value: n,
child: Text('1/$n'),
))
.toList(),
onChanged: (value) {
if (value != null) {
setState(() {
_processEveryNFrames = value;
});
}
},
),
],
),
],
),
),
),
),
],
),
);
}
Widget _buildMacOSCamera(BuildContext context) {
if (!_isInitialized) {
return Scaffold(
appBar: AppBar(
title: const Text('Live Camera Detection'),
backgroundColor: Colors.green,
foregroundColor: Colors.white,
),
body: const Center(child: CircularProgressIndicator()),
);
}
final size = MediaQuery.of(context).size;
final double cameraAspectRatio = _macPreviewSize != null
? _macPreviewSize!.width / _macPreviewSize!.height
: size.width / size.height;
return Scaffold(
appBar: AppBar(
title: const Text('Live Camera Detection'),
backgroundColor: Colors.green,
foregroundColor: Colors.white,
actions: [
// Detection mode dropdown
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 8.0),
child: DropdownButton<FaceDetectionMode>(
value: _detectionMode,
dropdownColor: Colors.green[800],
style: const TextStyle(color: Colors.white, fontSize: 14),
underline: const SizedBox(),
items: const [
DropdownMenuItem(
value: FaceDetectionMode.fast,
child: Text('Fast'),
),
DropdownMenuItem(
value: FaceDetectionMode.standard,
child: Text('Standard'),
),
DropdownMenuItem(
value: FaceDetectionMode.full,
child: Text('Full'),
),
],
onChanged: (value) {
if (value != null) {
setState(() => _detectionMode = value);
}
},
),
),
),
// Detection model dropdown
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 8.0),
child: DropdownButton<FaceDetectionModel>(
value: _detectionModel,
dropdownColor: Colors.green[800],
style: const TextStyle(color: Colors.white, fontSize: 14),
underline: const SizedBox(),
items: const [
DropdownMenuItem(
value: FaceDetectionModel.frontCamera,
child: Text('Front'),
),
DropdownMenuItem(
value: FaceDetectionModel.backCamera,
child: Text('Back'),
),
DropdownMenuItem(
value: FaceDetectionModel.shortRange,
child: Text('Short'),
),
DropdownMenuItem(
value: FaceDetectionModel.full,
child: Text('Full Range'),
),
DropdownMenuItem(
value: FaceDetectionModel.fullSparse,
child: Text('Full Sparse'),
),
],
onChanged: (value) async {
if (value != null && value != _detectionModel) {
setState(() => _detectionModel = value);
// Reinitialize detector isolate with new model
_faceDetectorIsolate?.dispose();
_faceDetectorIsolate = await FaceDetectorIsolate.spawn(
model: _detectionModel,
);
}
},
),
),
),
Center(
child: Padding(
padding: const EdgeInsets.symmetric(horizontal: 16.0),
child: Text(
'FPS: $_fps | ${_detectionTimeMs}ms',
style: const TextStyle(fontSize: 14),
),
),
),
],
),
body: Stack(
fit: StackFit.expand,
children: [
Center(
child: AspectRatio(
aspectRatio: cameraAspectRatio,
child: Stack(
fit: StackFit.expand,
children: [
CameraMacOSView(
cameraMode: CameraMacOSMode.photo,
fit: BoxFit.contain,
onCameraInizialized: _onMacCameraInitialized,
onCameraLoading: (_) =>
const Center(child: CircularProgressIndicator()),
),
if (_imageSize != null)
CustomPaint(
painter: _CameraDetectionPainter(
faces: _faces,
imageSize: _imageSize!,
cameraAspectRatio: cameraAspectRatio,
displayAspectRatio: cameraAspectRatio,
detectionMode: _detectionMode,
sensorOrientation: 0, // macOS doesn't need rotation
deviceOrientation: Orientation.landscape,
isFrontCamera:
true, // macOS typically uses front camera
),
),
],
),
),
),
Positioned(
bottom: 20,
left: 0,
right: 0,
child: Center(
child: Container(
padding:
const EdgeInsets.symmetric(horizontal: 20, vertical: 12),
decoration: BoxDecoration(
color: Colors.black.withAlpha(179),
borderRadius: BorderRadius.circular(8),
),
child: Column(
mainAxisSize: MainAxisSize.min,
children: [
Text(
'Faces Detected: ${_faces.length}',
style: const TextStyle(
color: Colors.white,
fontSize: 18,
fontWeight: FontWeight.bold,
),
),
const SizedBox(height: 8),
Row(
mainAxisSize: MainAxisSize.min,
children: [
const Text(
'Frame Skip: ',
style: TextStyle(color: Colors.white70, fontSize: 14),
),
DropdownButton<int>(
value: _processEveryNFrames,
dropdownColor: Colors.black87,
style: const TextStyle(color: Colors.white),
items: [1, 2, 3, 4, 5]
.map((n) => DropdownMenuItem(
value: n,
child: Text('1/$n'),
))
.toList(),
onChanged: (value) {
if (value != null) {
setState(() {
_processEveryNFrames = value;
});
}
},
),
],
),
],
),
),
),
),
],
),
);
}
void _onMacCameraInitialized(CameraMacOSController controller) {
_macCameraController = controller;
_macPreviewSize = controller.args.size;
setState(() {
_isInitialized = true;
});
_startMacImageStream();
}
void _startMacImageStream() {
if (_macCameraController == null) return;
_macCameraController!.startImageStream((image) async {
if (image == null) return;
_frameCounter++;
_framesSinceLastUpdate++;
final now = DateTime.now();
if (_lastFpsUpdate != null) {
final diff = now.difference(_lastFpsUpdate!).inMilliseconds;
if (diff >= 1000) {
setState(() {
_fps = (_framesSinceLastUpdate * 1000 / diff).round();
_framesSinceLastUpdate = 0;
_lastFpsUpdate = now;
});
}
} else {
_lastFpsUpdate = now;
}
if (_frameCounter % _processEveryNFrames != 0) return;
if (_isProcessing) return;
_isProcessing = true;
try {
final startTime = DateTime.now();
// Use OpenCV-based processing for better performance
final mat = _convertMacImageToMat(image);
if (mat == null || _faceDetectorIsolate == null) {
_isProcessing = false;
return;
}
// Run face detection in background isolate
final faces = await _faceDetectorIsolate!.detectFacesFromMat(
mat,
mode: _detectionMode,
);
// Dispose the Mat after detection
mat.dispose();
final detectionTime =
DateTime.now().difference(startTime).inMilliseconds;
if (mounted) {
setState(() {
_faces = faces;
_imageSize = Size(image.width.toDouble(), image.height.toDouble());
_macPreviewSize ??=
Size(image.width.toDouble(), image.height.toDouble());
_detectionTimeMs = detectionTime;
});
}
} catch (_) {
// Ignore frame errors to keep streaming
} finally {
_isProcessing = false;
}
});
}
}
class _CameraDetectionPainter extends CustomPainter {
final List<Face> faces;
final Size imageSize;
final double cameraAspectRatio;
final double displayAspectRatio;
final FaceDetectionMode detectionMode;
final int sensorOrientation;
final Orientation deviceOrientation;
final bool isFrontCamera;
_CameraDetectionPainter({
required this.faces,
required this.imageSize,
required this.cameraAspectRatio,
required this.displayAspectRatio,
required this.detectionMode,
required this.sensorOrientation,
required this.deviceOrientation,
required this.isFrontCamera,
});
@override
void paint(Canvas canvas, Size size) {
if (faces.isEmpty) return;
final boxPaint = Paint()
..style = PaintingStyle.stroke
..strokeWidth = 3.0
..color = const Color(0xFF00FFCC);
final landmarkPaint = Paint()
..style = PaintingStyle.fill
..color = const Color(0xFF89CFF0);
final meshPaint = Paint()
..style = PaintingStyle.fill
..color = const Color(0xFFF4C2C2);
final irisFill = Paint()
..style = PaintingStyle.fill
..color = const Color(0xFF22AAFF).withAlpha(153)
..blendMode = BlendMode.srcOver;
final irisStroke = Paint()
..style = PaintingStyle.stroke
..strokeWidth = 1.5
..color = const Color(0xFF22AAFF).withAlpha(230);
// The canvas fills the AspectRatio widget, so size IS the display area
final double displayWidth = size.width;
final double displayHeight = size.height;
// Detection was done on raw camera frame (imageSize.width x imageSize.height)
// CameraPreview rotates the display based on sensor orientation
// We need to transform detection coords to match CameraPreview's display
// Check if CameraPreview is showing a rotated view
final bool isPortraitMode =
sensorOrientation == 90 && deviceOrientation == Orientation.portrait;
// After CameraPreview rotation, the displayed image dimensions are:
// - Portrait: height x width (swapped)
// - Landscape: width x height (same)
final double sourceWidth =
isPortraitMode ? imageSize.height : imageSize.width;
final double sourceHeight =
isPortraitMode ? imageSize.width : imageSize.height;
final double scaleX = displayWidth / sourceWidth;
final double scaleY = displayHeight / sourceHeight;
// Transform a detection coordinate to canvas coordinate
//
// In portrait mode:
// - Camera frame is landscape (e.g., 480x640 where 480 is width)
// - We rotated image -90° (CCW) before detection, so detection image is 640x480
// - imageSize = (640, 480) = rotated dimensions
// - Detection coords are in this rotated (640x480) space
// - CameraPreview displays upright (as if rotated from camera's landscape)
// - We need to rotate detection coords +90° (CW) to match CameraPreview
// - Rotate CW: (x, y) -> (height - y, x) where height = imageSize.height
Offset transformPoint(double x, double y) {
double tx, ty;
if (isPortraitMode) {
// Rotate +90° (CW) to undo the -90° we applied before detection
// (x, y) -> (imageSize.height - y, x)
tx = imageSize.height - y;
ty = x;
} else {
tx = x;
ty = y;
}
return Offset(tx * scaleX, ty * scaleY);
}
// Draw bounding boxes and features for each face
for (final face in faces) {
// Draw bounding box - need to handle that top-left might not be top-left after rotation
final boundingBox = face.boundingBox;
final p1 = transformPoint(boundingBox.topLeft.x, boundingBox.topLeft.y);
final p2 =
transformPoint(boundingBox.bottomRight.x, boundingBox.bottomRight.y);
// After rotation, we need to find the actual min/max
final rect = Rect.fromLTRB(
min(p1.dx, p2.dx),
min(p1.dy, p2.dy),
max(p1.dx, p2.dx),
max(p1.dy, p2.dy),
);
canvas.drawRect(rect, boxPaint);
// Draw the 6 simple landmarks (available in all modes)
for (final landmark in face.landmarks.values) {
final transformed = transformPoint(landmark.x, landmark.y);
canvas.drawCircle(transformed, 4.0, landmarkPaint);
}
// Draw mesh if in standard or full mode
if (detectionMode == FaceDetectionMode.standard ||
detectionMode == FaceDetectionMode.full) {
final FaceMesh? faceMesh = face.mesh;
if (faceMesh != null) {
final mesh = faceMesh.points;
final double imgArea = displayWidth * displayHeight;
final double radius = 1.25 + sqrt(imgArea) / 1000.0;
for (final p in mesh) {
final transformed = transformPoint(p.x, p.y);
canvas.drawCircle(transformed, radius, meshPaint);
}
}
}
// Draw iris and eye contours if in full mode
if (detectionMode == FaceDetectionMode.full) {
final eyePair = face.eyes;
if (eyePair != null) {
for (final iris in [eyePair.leftEye, eyePair.rightEye]) {
if (iris == null) continue;
// Draw iris (center + contour as oval)
final allIrisPoints = [iris.irisCenter, ...iris.irisContour];
final transformedIrisPoints =
allIrisPoints.map((p) => transformPoint(p.x, p.y)).toList();
double minX = transformedIrisPoints.first.dx,
maxX = transformedIrisPoints.first.dx;
double minY = transformedIrisPoints.first.dy,
maxY = transformedIrisPoints.first.dy;
for (final p in transformedIrisPoints) {
if (p.dx < minX) minX = p.dx;
if (p.dx > maxX) maxX = p.dx;
if (p.dy < minY) minY = p.dy;
if (p.dy > maxY) maxY = p.dy;
}
final cx = (minX + maxX) * 0.5;
final cy = (minY + maxY) * 0.5;
final rx = (maxX - minX) * 0.5;
final ry = (maxY - minY) * 0.5;
final oval = Rect.fromCenter(
center: Offset(cx, cy), width: rx * 2, height: ry * 2);
canvas.drawOval(oval, irisFill);
canvas.drawOval(oval, irisStroke);
// Draw eye contour landmarks
if (iris.mesh.isNotEmpty) {
// Draw the visible eyeball contour (eyelid outline) as connected lines
final Paint eyeOutlinePaint = Paint()
..color = const Color(0xFF22AAFF)
..style = PaintingStyle.stroke
..strokeWidth = 1.5;
final eyelidContour = iris.contour;
for (final connection in eyeLandmarkConnections) {
if (connection[0] < eyelidContour.length &&
connection[1] < eyelidContour.length) {
final p1 = eyelidContour[connection[0]];
final p2 = eyelidContour[connection[1]];
final t1 = transformPoint(p1.x, p1.y);
final t2 = transformPoint(p2.x, p2.y);
canvas.drawLine(t1, t2, eyeOutlinePaint);
}
}
// Draw all 71 eye mesh points as small dots
final Paint eyeMeshPointPaint = Paint()
..color = const Color(0xFFFFAA22)
..style = PaintingStyle.fill;
for (final p in iris.mesh) {
final transformed = transformPoint(p.x, p.y);
canvas.drawCircle(transformed, 0.8, eyeMeshPointPaint);
}
}
}
}
}
}
}
@override
bool shouldRepaint(covariant _CameraDetectionPainter old) {
return old.faces != faces ||
old.imageSize != imageSize ||
old.cameraAspectRatio != cameraAspectRatio ||
old.displayAspectRatio != displayAspectRatio ||
old.detectionMode != detectionMode ||
old.sensorOrientation != sensorOrientation ||
old.deviceOrientation != deviceOrientation ||
old.isFrontCamera != isFrontCamera;
}
}