apple_vision_face 0.0.3 apple_vision_face: ^0.0.3 copied to clipboard
A Flutter plugin to use Apple Vision Face Detection to detect faces in an image or video stream, identify key facial features, and get the contours of detected faces.
import 'package:apple_vision_face/apple_vision_face.dart';
import 'package:flutter/material.dart';
import '../camera/camera_insert.dart';
import 'package:flutter/foundation.dart';
import 'package:flutter/services.dart';
import 'camera/input_image.dart';
void main() {
runApp(const MyApp());
}
class MyApp extends StatelessWidget {
const MyApp({super.key});
// This widget is the root of your application.
@override
Widget build(BuildContext context) {
return MaterialApp(
title: 'Flutter Demo',
theme: ThemeData(
primarySwatch: Colors.blue,
),
home: const VisionFace(),
);
}
}
class VisionFace extends StatefulWidget {
const VisionFace({
Key? key,
this.onScanned
}):super(key: key);
final Function(dynamic data)? onScanned;
@override
_VisionFace createState() => _VisionFace();
}
class _VisionFace extends State<VisionFace> {
final GlobalKey cameraKey = GlobalKey(debugLabel: "cameraKey");
AppleVisionFaceController visionController = AppleVisionFaceController();
InsertCamera camera = InsertCamera();
String? deviceId;
bool loading = true;
Size imageSize = const Size(640,640*9/16);
List<FaceData>? faceData;
late double deviceWidth;
late double deviceHeight;
@override
void initState() {
camera.setupCameras().then((value){
setState(() {
loading = false;
});
camera.startLiveFeed((InputImage i){
if(i.metadata?.size != null){
imageSize = i.metadata!.size;
}
if(mounted) {
Uint8List? image = i.bytes;
visionController.processImage(image!, i.metadata!.size).then((data){
faceData = data;
setState(() {
});
});
}
});
});
super.initState();
}
@override
void dispose() {
camera.dispose();
super.dispose();
}
@override
Widget build(BuildContext context) {
deviceWidth = MediaQuery.of(context).size.width;
deviceHeight = MediaQuery.of(context).size.height;
return Stack(
children:<Widget>[
SizedBox(
width: imageSize.width,
height: imageSize.height,
child: loading?Container():CameraSetup(camera: camera,size: imageSize,)
),
]+showPoints()
);
}
List<Widget> showPoints(){
if(faceData == null || faceData!.isEmpty) return[];
List<Widget> widgets = [];
Map<LandMark,Color> colors = {
LandMark.faceContour: Colors.amber,
LandMark.outerLips: Colors.red,
LandMark.innerLips: Colors.pink,
LandMark.leftEye: Colors.green,
LandMark.rightEye: Colors.green,
LandMark.leftPupil: Colors.purple,
LandMark.rightPupil: Colors.purple,
LandMark.leftEyebrow: Colors.lime,
LandMark.rightEyebrow: Colors.lime,
};
for(int k = 0; k < faceData!.length;k++){
if(faceData![k].marks.isNotEmpty){
for(int i = 0; i < faceData![k].marks.length; i++){
List<FacePoint> points = faceData![k].marks[i].location;
for(int j = 0; j < points.length;j++){
widgets.add(
Positioned(
left: points[j].x,
top: points[j].y,
child: Container(
width: 10,
height: 10,
decoration: BoxDecoration(
color: colors[faceData![k].marks[i].landmark],
borderRadius: BorderRadius.circular(5)
),
)
)
);
}
}
}
}
return widgets;
}
Widget loadingWidget(){
return Container(
width: deviceWidth,
height: deviceHeight,
color: Theme.of(context).canvasColor,
alignment: Alignment.center,
child: const CircularProgressIndicator(color: Colors.blue)
);
}
}