ai 0.1.7 ai: ^0.1.7 copied to clipboard
Library that help construct neural networks (AI) with Dart. Each type of network is one object and designed as close as possible to human brain.
Library for creating AI with Dart #
Created under a MIT-style license.
Overview #
This library represent an simple way to create neural network.
There are 2 types of neural network that can be created:
- MLP(multilayer and single-layer perceptron).
- AE(autoencoder).
API #
MLP
Perseptron is designed due to Rosenblatt's perseptron.
The main class is the MLP
which can contains Layers
.
Each layer consist of one or many Neuron
s.
First layer always consist of InputNeuron
s where each of them take one input value and have weight equal to 1.
All neurons of previous layer have contacts with each neurons of next layer.
In learning is used backpropagation algorithm.
AE
Architecture of AE
is the same as MLP
, except that first is used for encoding data.
Memory
Neural network have long-time and short-time memory.
All information (knowledge - weights of synapces) of neural network during studying pass through short-time memory.
When studying finished and knowledge is structured, then it pass to long-time memory.
Knowledge is saved in JSON file knowledge.json
in resources
directory in the root of your library.
For next time network take knowledge from file and initialize with proper weights.
Structure
Neural network can be created from predefined structure difined in structure.json
file. You can place it anywhere you want, but default and preffered way is placing it in resources
directory in the root of your library.
Every structure.json
must have type
property that corresspond to neural network's names.
Structure of MLP:
{
"type": "MLP",
"input": 15, // count of `InputNeuron`s
"hiddens": [3], // array length shows count of hidden `Layer`s and values are count of `Neuron`s of each layer
"output": 3 // count of output `Neuron`s
}
Structure of AE:
{
"type": "AE",
"input": 15, // count of `InputNeuron`s
"hiddens": [3], // array length shows count of hidden `Layer`s and values are count of `Neuron`s of each layer for encoded and decoded parts
"encoded": 3 // count of `Neuron`s that encode data
}
Visualization
Visualization of process of training network is available. Implemented only Mean Squared Error
(MSE
). If visualise
paramenter of train()
method is true
then MSE sends to console.
Sample #
This testing network recognize number 5 from numbers in range from 0 to 9. Also she detects distorted numbers of 5.
import 'package:ai/ai.dart';
void main() {
final l1 = Layer<InputNeuron>(<InputNeuron>[
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron(),
InputNeuron()
]);
final l2 = Layer<Neuron>(<Neuron>[
Neuron(15),
Neuron(15),
Neuron(15),
Neuron(15),
Neuron(15)
]);
final l3 = Layer<Neuron>(<Neuron>[
Neuron(5)
]);
final n = MLP(<Layer<NeuronBase>>[
l1,
l2,
l3
]);
// Expected results according to learning data (10)
final expected = <List<double>>[
<double>[0.01],
<double>[0.01],
<double>[0.01],
<double>[0.01],
<double>[0.01],
<double>[0.99], // 5
<double>[0.01],
<double>[0.01],
<double>[0.01],
<double>[0.01]
];
// Learning data (10)
final trainInput = <List<double>>[
'111101101101111'.split('').map(double.parse).toList(),
'001001001001001'.split('').map(double.parse).toList(),
'111001111100111'.split('').map(double.parse).toList(),
'111001111001111'.split('').map(double.parse).toList(),
'101101111001001'.split('').map(double.parse).toList(),
'111100111001111'.split('').map(double.parse).toList(), // 5
'111100111101111'.split('').map(double.parse).toList(),
'111001001001001'.split('').map(double.parse).toList(),
'111101111101111'.split('').map(double.parse).toList(),
'111101111001111'.split('').map(double.parse).toList()
];
// Testing data
final testInput = <List<double>>[
'111100111000111'.split('').map(double.parse).toList(),
'111100010001111'.split('').map(double.parse).toList(),
'111100011001111'.split('').map(double.parse).toList(),
'110100111001111'.split('').map(double.parse).toList(),
'110100111001011'.split('').map(double.parse).toList(),
'111100101001111'.split('').map(double.parse).toList()
];
// Number which this network must recognize
final num5 = '111100111001111'.split('').map(double.parse).toList();
// This network trains
n.train(input: trainInput, expected: expected, learningRate: 0.42, epoch: 5000, visualize: true);
// This network predicts result
print('Recognize 5? - ${n.predict(num5)}');
for (var item in testInput) {
print('Recognize distorted 5? - ${n.predict(item)[0]}');
}
print('Аnd 0? - ${n.predict(trainInput[0])}');
print('Аnd 8? - ${n.predict(trainInput[8])}');
print('Аnd 3? - ${n.predict(trainInput[3])}');
}
Features and bugs #
Please file feature requests and bugs at the issue tracker.
With ❤️ to AI