imgproc
library
Functions
accumulate (InputArray src , InputOutputArray dst , {InputArray ? mask })
→ Mat
Adds the square of a source image to the accumulator image.
accumulateAsync (InputArray src , InputOutputArray dst , {InputArray ? mask })
→ Future <Mat >
Adds the square of a source image to the accumulator image.
accumulateProduct (InputArray src1 , InputArray src2 , InputOutputArray dst , {InputArray ? mask })
→ Mat
Adds the per-element product of two input images to the accumulator image.
accumulateProductAsync (InputArray src1 , InputArray src2 , InputOutputArray dst , {InputArray ? mask })
→ Future <Mat >
Adds the per-element product of two input images to the accumulator image.
accumulateSquare (InputArray src , InputOutputArray dst , {InputArray ? mask })
→ Mat
Adds the square of a source image to the accumulator image.
accumulateSquareAsync (InputArray src , InputOutputArray dst , {InputArray ? mask })
→ Future <Mat >
Adds the square of a source image to the accumulator image.
accumulateWeighted (InputArray src , InputOutputArray dst , double alpha , {InputArray ? mask })
→ Mat
Updates a running average.
accumulateWeightedAsync (InputArray src , InputOutputArray dst , double alpha , {InputArray ? mask })
→ Future <Mat >
Updates a running average.
adaptiveThreshold (InputArray src , double maxValue , int adaptiveMethod , int thresholdType , int blockSize , double C , {OutputArray ? dst })
→ Mat
AdaptiveThreshold applies a fixed-level threshold to each array element.
adaptiveThresholdAsync (InputArray src , double maxValue , int adaptiveMethod , int thresholdType , int blockSize , double C )
→ Future <Mat >
AdaptiveThreshold applies a fixed-level threshold to each array element.
applyColorMap (InputArray src , int colormap , {OutputArray ? dst })
→ Mat
ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image.
colormap: ColormapTypes
For further details, please see:
https:///docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
applyColorMapAsync (InputArray src , int colormap )
→ Future <Mat >
ApplyColorMap applies a GNU Octave/MATLAB equivalent colormap on a given image.
colormap: ColormapTypes
For further details, please see:
https:///docs.opencv.org/master/d3/d50/group__imgproc__colormap.html#gadf478a5e5ff49d8aa24e726ea6f65d15
applyCustomColorMap (InputArray src , InputArray userColor , {OutputArray ? dst })
→ Mat
ApplyCustomColorMap applies a custom defined colormap on a given image.
applyCustomColorMapAsync (InputArray src , InputArray userColor )
→ Future <Mat >
ApplyCustomColorMap applies a custom defined colormap on a given image.
approxPolyDP (VecPoint curve , double epsilon , bool closed )
→ VecPoint
ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
approxPolyDPAsync (VecPoint curve , double epsilon , bool closed )
→ Future <VecPoint >
ApproxPolyDP approximates a polygonal curve(s) with the specified precision.
arcLength (VecPoint curve , bool closed )
→ double
ArcLength calculates a contour perimeter or a curve length.
arcLengthAsync (VecPoint curve , bool closed )
→ Future <double >
ArcLength calculates a contour perimeter or a curve length.
arrowedLine (InputOutputArray img , Point pt1 , Point pt2 , Scalar color , {int thickness = 1 , int line_type = 8 , int shift = 0 , double tipLength = 0.1 })
→ Mat
ArrowedLine draws a arrow segment pointing from the first point
to the second one.
arrowedLineAsync (InputOutputArray img , Point pt1 , Point pt2 , Scalar color , {int thickness = 1 , int line_type = 8 , int shift = 0 , double tipLength = 0.1 })
→ Future <Mat >
ArrowedLine draws a arrow segment pointing from the first point
to the second one.
bilateralFilter (Mat src , int diameter , double sigmaColor , double sigmaSpace , {Mat ? dst })
→ Mat
BilateralFilter applies a bilateral filter to an image.
bilateralFilterAsync (Mat src , int diameter , double sigmaColor , double sigmaSpace )
→ Future <Mat >
BilateralFilter applies a bilateral filter to an image.
blur (Mat src , (int , int ) ksize , {Mat ? dst })
→ Mat
Blur blurs an image Mat using a normalized box filter.
blurAsync (Mat src , (int , int ) ksize )
→ Future <Mat >
Blur blurs an image Mat using a normalized box filter.
boundingRect (VecPoint points )
→ Rect
BoundingRect calculates the up-right bounding rectangle of a point set.
boundingRectAsync (VecPoint points )
→ Future <Rect >
BoundingRect calculates the up-right bounding rectangle of a point set.
boxFilter (Mat src , int depth , (int , int ) ksize , {Point ? anchor , bool normalize = true , int borderType = BORDER_DEFAULT , Mat ? dst })
→ Mat
BoxFilter blurs an image using the box filter.
boxFilterAsync (Mat src , int depth , (int , int ) ksize )
→ Future <Mat >
BoxFilter blurs an image using the box filter.
boxPoints (RotatedRect rect , {VecPoint2f ? pts })
→ VecPoint2f
BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
boxPointsAsync (RotatedRect rect )
→ Future <VecPoint2f >
BoxPoints finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
calcBackProject (VecMat src , VecI32 channels , Mat hist , VecF32 ranges , {Mat ? dst , double scale = 1.0 })
→ Mat
CalcBackProject calculates the back projection of a histogram.
calcBackProjectAsync (VecMat src , VecI32 channels , Mat hist , VecF32 ranges , {double scale = 1.0 })
→ Future <Mat >
CalcBackProject calculates the back projection of a histogram.
calcHist (VecMat src , VecI32 channels , Mat mask , VecI32 histSize , VecF32 ranges , {Mat ? hist , bool accumulate = false })
→ Mat
CalcHist Calculates a histogram of a set of images
calcHistAsync (VecMat src , VecI32 channels , Mat mask , VecI32 histSize , VecF32 ranges , {bool accumulate = false })
→ Future <Mat >
CalcHist Calculates a histogram of a set of images
canny (Mat image , double threshold1 , double threshold2 , {OutputArray ? edges , int apertureSize = 3 , bool l2gradient = false })
→ Mat
Canny finds edges in an image using the Canny algorithm.
The function finds edges in the input image image and marks
them in the output map edges using the Canny algorithm.
The smallest value between threshold1 and threshold2 is used
for edge linking. The largest value is used to
find initial segments of strong edges.
See http:///en.wikipedia.org/wiki/Canny_edge_detector
cannyAsync (Mat image , double threshold1 , double threshold2 , {int apertureSize = 3 , bool l2gradient = false })
→ Future <Mat >
Canny finds edges in an image using the Canny algorithm.
The function finds edges in the input image image and marks
them in the output map edges using the Canny algorithm.
The smallest value between threshold1 and threshold2 is used
for edge linking. The largest value is used to
find initial segments of strong edges.
See http:///en.wikipedia.org/wiki/Canny_edge_detector
circle (InputOutputArray img , Point center , int radius , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Mat
CircleWithParams draws a circle.
circleAsync (InputOutputArray img , Point center , int radius , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Future <Mat >
CircleWithParams draws a circle.
clipLine (Rect imgRect , Point pt1 , Point pt2 )
→ (bool , Point , Point )
ClipLine clips the line against the image rectangle.
For further details, please see:
https:///docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf483cb46ad6b049bc35ec67052ef1c2c
clipLineAsync (Rect imgRect , Point pt1 , Point pt2 )
→ Future <(bool , Point , Point ) >
ClipLine clips the line against the image rectangle.
For further details, please see:
https:///docs.opencv.org/master/d6/d6e/group__imgproc__draw.html#gaf483cb46ad6b049bc35ec67052ef1c2c
compareHist (Mat hist1 , Mat hist2 , {int method = 0 })
→ double
CompareHist Compares two histograms.
mode: HistCompMethods
For further details, please see:
https:///docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
compareHistAsync (Mat hist1 , Mat hist2 , {int method = 0 })
→ Future <double >
CompareHist Compares two histograms.
mode: HistCompMethods
For further details, please see:
https:///docs.opencv.org/master/d6/dc7/group__imgproc__hist.html#gaf4190090efa5c47cb367cf97a9a519bd
connectedComponents (Mat image , Mat labels , int connectivity , int ltype , int ccltype )
→ int
ConnectedComponents computes the connected components labeled image of boolean image.
connectedComponentsAsync (Mat image , int connectivity , int ltype , int ccltype )
→ Future <(int , Mat ) >
ConnectedComponents computes the connected components labeled image of boolean image.
connectedComponentsWithStats (Mat src , Mat labels , Mat stats , Mat centroids , int connectivity , int ltype , int ccltype )
→ int
ConnectedComponentsWithStats computes the connected components labeled image of boolean
image and also produces a statistics output for each label.
connectedComponentsWithStatsAsync (Mat src , int connectivity , int ltype , int ccltype )
→ Future <(int , Mat , Mat , Mat ) >
ConnectedComponentsWithStats computes the connected components labeled image of boolean
image and also produces a statistics output for each label.
contourArea (VecPoint contour )
→ double
ContourArea calculates a contour area.
contourAreaAsync (VecPoint contour )
→ Future <double >
ContourArea calculates a contour area.
convexHull (VecPoint points , {Mat ? hull , bool clockwise = false , bool returnPoints = true })
→ Mat
ConvexHull finds the convex hull of a point set.
convexHullAsync (VecPoint points , {Mat ? hull , bool clockwise = false , bool returnPoints = true })
→ Future <Mat >
ConvexHull finds the convex hull of a point set.
convexityDefects (VecPoint contour , Mat hull , {Mat ? convexityDefects })
→ Mat
ConvexityDefects finds the convexity defects of a contour.
convexityDefectsAsync (VecPoint contour , Mat hull , {Mat ? convexityDefects })
→ Future <Mat >
ConvexityDefects finds the convexity defects of a contour.
cornerSubPix (InputArray image , VecPoint2f corners , (int , int ) winSize , (int , int ) zeroZone , [(int , int , double ) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4) ])
→ VecPoint2f
CornerSubPix Refines the corner locations. The function iterates to find
the sub-pixel accurate location of corners or radial saddle points.
cornerSubPixAsync (InputArray image , VecPoint2f corners , (int , int ) winSize , (int , int ) zeroZone , [(int , int , double ) criteria = (TERM_COUNT + TERM_EPS, 30, 1e-4) ])
→ Future <VecPoint2f >
CornerSubPix Refines the corner locations. The function iterates to find
the sub-pixel accurate location of corners or radial saddle points.
cvtColor (Mat src , int code , {Mat ? dst })
→ Mat
CvtColor converts an image from one color space to another.
It converts the src Mat image to the dst Mat using the
code param containing the desired ColorConversionCode color space.
cvtColorAsync (Mat src , int code )
→ Future <Mat >
CvtColor converts an image from one color space to another.
It converts the src Mat image to the dst Mat using the
code param containing the desired ColorConversionCode color space.
dilate (Mat src , Mat kernel , {Mat ? dst , Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
Dilate dilates an image by using a specific structuring element.
dilateAsync (Mat src , Mat kernel , {Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
Dilate dilates an image by using a specific structuring element.
distanceTransform (Mat src , int distanceType , int maskSize , int labelType , {Mat ? dst , Mat ? labels })
→ (Mat , Mat )
DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
distanceTransformAsync (Mat src , int distanceType , int maskSize , int labelType )
→ Future <(Mat , Mat ) >
DistanceTransform Calculates the distance to the closest zero pixel for each pixel of the source image.
drawContours (InputOutputArray image , Contours contours , int contourIdx , Scalar color , {int thickness = 1 , int lineType = LINE_8 , InputArray ? hierarchy , int maxLevel = 0x3f3f3f3f , Point ? offset })
→ Mat
DrawContours draws contours outlines or filled contours.
drawContoursAsync (InputOutputArray image , Contours contours , int contourIdx , Scalar color , {int thickness = 1 , int lineType = LINE_8 , InputArray ? hierarchy , int maxLevel = 0x3f3f3f3f , Point ? offset })
→ Future <Mat >
DrawContours draws contours outlines or filled contours.
ellipse (InputOutputArray img , Point center , Point axes , double angle , double startAngle , double endAngle , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Mat
Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
ellipseAsync (InputOutputArray img , Point center , Point axes , double angle , double startAngle , double endAngle , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Future <Mat >
Ellipse draws a simple or thick elliptic arc or fills an ellipse sector.
equalizeHist (Mat src , {Mat ? dst })
→ Mat
EqualizeHist Equalizes the histogram of a grayscale image.
equalizeHistAsync (Mat src )
→ Future <Mat >
EqualizeHist Equalizes the histogram of a grayscale image.
erode (Mat src , Mat kernel , {Mat ? dst , Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
Erode erodes an image by using a specific structuring element.
erodeAsync (Mat src , Mat kernel , {Mat ? dst , Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
Erode erodes an image by using a specific structuring element.
fillPoly (InputOutputArray img , VecVecPoint pts , Scalar color , {int lineType = LINE_8 , int shift = 0 , Point ? offset })
→ Mat
FillPolyWithParams fills the area bounded by one or more polygons.
fillPolyAsync (InputOutputArray img , VecVecPoint pts , Scalar color , {int lineType = LINE_8 , int shift = 0 , Point ? offset })
→ Future <Mat >
FillPolyWithParams fills the area bounded by one or more polygons.
filter2D (InputArray src , int ddepth , InputArray kernel , {OutputArray ? dst , Point ? anchor , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Mat
Filter2D applies an arbitrary linear filter to an image.
filter2DAsync (InputArray src , int ddepth , InputArray kernel , {Point ? anchor , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
Filter2D applies an arbitrary linear filter to an image.
findContours (Mat src , int mode , int method )
→ (Contours , Mat )
FindContours finds contours in a binary image.
findContoursAsync (Mat src , int mode , int method )
→ Future <(Contours , Mat ) >
FindContours finds contours in a binary image.
findHomography (InputArray srcPoints , InputArray dstPoints , {int method = 0 , double ransacReprojThreshold = 3 , OutputArray ? mask , int maxIters = 2000 , double confidence = 0.995 })
→ Mat
FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
findHomographyAsync (InputArray srcPoints , InputArray dstPoints , {int method = 0 , double ransacReprojThreshold = 3 , int maxIters = 2000 , double confidence = 0.995 })
→ Future <(Mat , Mat ) >
FindHomography finds an optimal homography matrix using 4 or more point pairs (as opposed to GetPerspectiveTransform, which uses exactly 4)
fitEllipse (VecPoint points )
→ RotatedRect
FitEllipse Fits an ellipse around a set of 2D points.
fitEllipseAsync (VecPoint points )
→ Future <RotatedRect >
FitEllipse Fits an ellipse around a set of 2D points.
fitLine (VecPoint points , int distType , double param , double reps , double aeps , {OutputArray ? line })
→ Mat
FitLine fits a line to a 2D or 3D point set.
distType: DistanceTypes
For further details, please see:
https:///docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
fitLineAsync (VecPoint points , int distType , double param , double reps , double aeps )
→ Future <Mat >
FitLine fits a line to a 2D or 3D point set.
distType: DistanceTypes
For further details, please see:
https:///docs.opencv.org/master/d3/dc0/group__imgproc__shape.html#gaf849da1fdafa67ee84b1e9a23b93f91f
gaussianBlur (Mat src , (int , int ) ksize , double sigmaX , {Mat ? dst , double sigmaY = 0 , int borderType = BORDER_DEFAULT })
→ Mat
GaussianBlur blurs an image Mat using a Gaussian filter.
The function convolves the src Mat image into the dst Mat using
the specified Gaussian kernel params.
gaussianBlurAsync (Mat src , (int , int ) ksize , double sigmaX , {Mat ? dst , double sigmaY = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
GaussianBlur blurs an image Mat using a Gaussian filter.
The function convolves the src Mat image into the dst Mat using
the specified Gaussian kernel params.
getAffineTransform (VecPoint src , VecPoint dst )
→ Mat
GetAffineTransform returns a 2x3 affine transformation matrix for the
corresponding 3 point pairs as image.Point.
getAffineTransform2f (VecPoint2f src , VecPoint2f dst )
→ Mat
getAffineTransform2fAsync (VecPoint2f src , VecPoint2f dst )
→ Future <Mat >
getAffineTransformAsync (VecPoint src , VecPoint dst )
→ Future <Mat >
GetAffineTransform returns a 2x3 affine transformation matrix for the
corresponding 3 point pairs as image.Point.
getGaussianKernel (int ksize , double sigma , {int ktype = 6 })
→ Mat
GetGaussianKernel returns Gaussian filter coefficients.
getGaussianKernelAsync (int ksize , double sigma , {int ktype = 6 })
→ Future <Mat >
GetGaussianKernel returns Gaussian filter coefficients.
getPerspectiveTransform (VecPoint src , VecPoint dst , [int solveMethod = DECOMP_LU ])
→ Mat
GetPerspectiveTransform returns 3x3 perspective transformation for the
corresponding 4 point pairs as image.Point.
getPerspectiveTransform2f (VecPoint2f src , VecPoint2f dst , [int solveMethod = DECOMP_LU ])
→ Mat
GetPerspectiveTransform2f returns 3x3 perspective transformation for the
corresponding 4 point pairs as gocv.Point2f.
getPerspectiveTransform2fAsync (VecPoint2f src , VecPoint2f dst , [int solveMethod = DECOMP_LU ])
→ Future <Mat >
GetPerspectiveTransform2f returns 3x3 perspective transformation for the
corresponding 4 point pairs as gocv.Point2f.
getPerspectiveTransformAsync (VecPoint src , VecPoint dst , [int solveMethod = DECOMP_LU ])
→ Future <Mat >
GetPerspectiveTransform returns 3x3 perspective transformation for the
corresponding 4 point pairs as image.Point.
getRectSubPix (InputArray image , (int , int ) patchSize , Point2f center , {OutputArray ? patch , int patchType = -1 })
→ Mat
GetRectSubPix retrieves a pixel rectangle from an image with sub-pixel accuracy.
getRectSubPixAsync (InputArray image , (int , int ) patchSize , Point2f center , {int patchType = -1 })
→ Future <Mat >
GetRectSubPix retrieves a pixel rectangle from an image with sub-pixel accuracy.
getRotationMatrix2D (Point2f center , double angle , double scale )
→ Mat
GetRotationMatrix2D calculates an affine matrix of 2D rotation.
getRotationMatrix2DAsync (Point2f center , double angle , double scale )
→ Future <Mat >
GetRotationMatrix2D calculates an affine matrix of 2D rotation.
getStructuringElement (int shape , (int , int ) ksize , {Point ? anchor })
→ Mat
GetStructuringElement returns a structuring element of the specified size
and shape for morphological operations.
getStructuringElementAsync (int shape , (int , int ) ksize , {Point ? anchor })
→ Future <Mat >
GetStructuringElement returns a structuring element of the specified size
and shape for morphological operations.
getTextSize (String text , int fontFace , double fontScale , int thickness )
→ (Size , int )
GetTextSizeWithBaseline calculates the width and height of a text string including the basline of the text.
It returns an image.Point with the size required to draw text using
a specific font face, scale, and thickness as well as its baseline.
getTextSizeAsync (String text , int fontFace , double fontScale , int thickness )
→ Future <(Size , int ) >
GetTextSizeWithBaseline calculates the width and height of a text string including the basline of the text.
It returns an image.Point with the size required to draw text using
a specific font face, scale, and thickness as well as its baseline.
goodFeaturesToTrack (InputArray image , int maxCorners , double qualityLevel , double minDistance , {VecPoint2f ? corners , InputArray ? mask , int blockSize = 3 , int ? gradientSize , bool useHarrisDetector = false , double k = 0.04 })
→ VecPoint2f
GoodFeaturesToTrack determines strong corners on an image. The function
finds the most prominent corners in the image or in the specified image region.
goodFeaturesToTrackAsync (InputArray image , int maxCorners , double qualityLevel , double minDistance , {InputArray ? mask , int blockSize = 3 , int ? gradientSize , bool useHarrisDetector = false , double k = 0.04 })
→ Future <VecPoint2f >
GoodFeaturesToTrack determines strong corners on an image. The function
finds the most prominent corners in the image or in the specified image region.
grabCut (InputArray img , InputOutputArray mask , Rect rect , InputOutputArray bgdModel , InputOutputArray fgdModel , int iterCount , {int mode = GC_EVAL })
→ (Mat , Mat , Mat )
Grabcut runs the GrabCut algorithm.
The function implements the GrabCut image segmentation algorithm.
For further details, please see:
https:///docs.opencv.org/master/d3/d47/group__imgproc__segmentation.html#ga909c1dda50efcbeaa3ce126be862b37f
grabCutAsync (InputArray img , InputOutputArray mask , Rect rect , InputOutputArray bgdModel , InputOutputArray fgdModel , int iterCount , {int mode = GC_EVAL })
→ Future <(Mat , Mat , Mat ) >
Grabcut runs the GrabCut algorithm.
The function implements the GrabCut image segmentation algorithm.
For further details, please see:
https:///docs.opencv.org/master/d3/d47/group__imgproc__segmentation.html#ga909c1dda50efcbeaa3ce126be862b37f
HoughCircles (InputArray image , int method , double dp , double minDist , {OutputArray ? circles , double param1 = 100 , double param2 = 100 , int minRadius = 0 , int maxRadius = 0 })
→ Mat
HoughCircles finds circles in a grayscale image using the Hough transform.
The only "method" currently supported is HoughGradient. If you want to pass
more parameters, please see HoughCirclesWithParams
.
HoughCirclesAsync (InputArray image , int method , double dp , double minDist , {double param1 = 100 , double param2 = 100 , int minRadius = 0 , int maxRadius = 0 })
→ Future <Mat >
HoughCircles finds circles in a grayscale image using the Hough transform.
The only "method" currently supported is HoughGradient. If you want to pass
more parameters, please see HoughCirclesWithParams
.
HoughLines (InputArray image , double rho , double theta , int threshold , {OutputArray ? lines , double srn = 0 , double stn = 0 , double min_theta = 0 , double max_theta = CV_PI })
→ Mat
HoughLines implements the standard or standard multi-scale Hough transform
algorithm for line detection. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
HoughLinesAsync (InputArray image , double rho , double theta , int threshold , {double srn = 0 , double stn = 0 , double min_theta = 0 , double max_theta = CV_PI })
→ Future <Mat >
HoughLines implements the standard or standard multi-scale Hough transform
algorithm for line detection. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
HoughLinesP (InputArray image , double rho , double theta , int threshold , {OutputArray ? lines , double minLineLength = 0 , double maxLineGap = 0 })
→ Mat
HoughLinesP implements the probabilistic Hough transform
algorithm for line detection. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
HoughLinesPAsync (InputArray image , double rho , double theta , int threshold , {double minLineLength = 0 , double maxLineGap = 0 })
→ Future <Mat >
HoughLinesP implements the probabilistic Hough transform
algorithm for line detection. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
HoughLinesPointSet (InputArray point , int lines_max , int threshold , double min_rho , double max_rho , double rho_step , double min_theta , double max_theta , double theta_step , {OutputArray ? lines })
→ Mat
HoughLinesPointSet implements the Hough transform algorithm for line
detection on a set of points. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
HoughLinesPointSetAsync (InputArray point , int lines_max , int threshold , double min_rho , double max_rho , double rho_step , double min_theta , double max_theta , double theta_step )
→ Future <Mat >
HoughLinesPointSet implements the Hough transform algorithm for line
detection on a set of points. For a good explanation of Hough transform, see:
http:///homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm
integral (InputArray src , {OutputArray ? sum , OutputArray ? sqsum , OutputArray ? tilted , int sdepth = -1 , int sqdepth = -1 })
→ (Mat , Mat , Mat )
Integral calculates one or more integral images for the source image.
For further details, please see:
https:///docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
integralAsync (InputArray src , {int sdepth = -1 , int sqdepth = -1 })
→ Future <(Mat , Mat , Mat ) >
Integral calculates one or more integral images for the source image.
For further details, please see:
https:///docs.opencv.org/master/d7/d1b/group__imgproc__misc.html#ga97b87bec26908237e8ba0f6e96d23e28
invertAffineTransform (InputArray M , {OutputArray ? iM })
→ Mat
Inverts an affine transformation.
The function computes an inverse affine transformation represented by 2×3 matrix M:
The result is also a 2×3 matrix of the same type as M.
invertAffineTransformAsync (InputArray M )
→ Future <Mat >
Inverts an affine transformation.
The function computes an inverse affine transformation represented by 2×3 matrix M:
The result is also a 2×3 matrix of the same type as M.
laplacian (Mat src , int ddepth , {Mat ? dst , int ksize = 1 , double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Mat
Laplacian calculates the Laplacian of an image.
laplacianAsync (Mat src , int ddepth , {int ksize = 1 , double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
Laplacian calculates the Laplacian of an image.
line (InputOutputArray img , Point pt1 , Point pt2 , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Mat
Line draws a line segment connecting two points.
linearPolar (InputArray src , Point2f center , double maxRadius , int flags , {OutputArray ? dst })
→ Mat
LinearPolar remaps an image to polar coordinates space.
linearPolarAsync (InputArray src , Point2f center , double maxRadius , int flags )
→ Future <Mat >
LinearPolar remaps an image to polar coordinates space.
lineAsync (InputOutputArray img , Point pt1 , Point pt2 , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Future <Mat >
Line draws a line segment connecting two points.
logPolar (InputArray src , Point2f center , double M , int flags , {OutputArray ? dst })
→ Mat
LogPolar remaps an image to semilog-polar coordinates space.
logPolarAsync (InputArray src , Point2f center , double M , int flags )
→ Future <Mat >
LogPolar remaps an image to semilog-polar coordinates space.
matchShapes (VecPoint contour1 , VecPoint contour2 , int method , double parameter )
→ double
Compares two shapes.
method: ShapeMatchModes
For further details, please see:
https:///docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#gaadc90cb16e2362c9bd6e7363e6e4c317
matchShapesAsync (VecPoint contour1 , VecPoint contour2 , int method , double parameter )
→ Future <double >
Compares two shapes.
method: ShapeMatchModes
For further details, please see:
https:///docs.opencv.org/4.x/d3/dc0/group__imgproc__shape.html#gaadc90cb16e2362c9bd6e7363e6e4c317
matchTemplate (Mat image , Mat templ , int method , {OutputArray ? result , Mat ? mask })
→ Mat
MatchTemplate compares a template against overlapped image regions.
matchTemplateAsync (Mat image , Mat templ , int method , {Mat ? mask })
→ Future <Mat >
MatchTemplate compares a template against overlapped image regions.
medianBlur (Mat src , int ksize , {OutputArray ? dst })
→ Mat
MedianBlur blurs an image using the median filter.
medianBlurAsync (Mat src , int ksize )
→ Future <Mat >
MedianBlur blurs an image using the median filter.
minAreaRect (VecPoint points )
→ RotatedRect
MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
minAreaRectAsync (VecPoint points )
→ Future <RotatedRect >
MinAreaRect finds a rotated rectangle of the minimum area enclosing the input 2D point set.
minEnclosingCircle (VecPoint points )
→ (Point2f , double )
MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
minEnclosingCircleAsync (VecPoint points )
→ Future <(Point2f , double ) >
MinEnclosingCircle finds a circle of the minimum area enclosing the input 2D point set.
moments (Mat src , {bool binaryImage = false })
→ Moments
Moments calculates all of the moments up to the third order of a polygon
or rasterized shape.
momentsAsync (Mat src , {bool binaryImage = false })
→ Future <Moments >
Moments calculates all of the moments up to the third order of a polygon
or rasterized shape.
morphologyDefaultBorderValue ()
→ Scalar
MorphologyDefaultBorder returns "magic" border value for erosion and dilation.
It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
morphologyDefaultBorderValueAsync ()
→ Future <Scalar >
MorphologyDefaultBorder returns "magic" border value for erosion and dilation.
It is automatically transformed to Scalar::all(-DBL_MAX) for dilation.
morphologyEx (Mat src , int op , Mat kernel , {Mat ? dst , Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
MorphologyEx performs advanced morphological transformations.
morphologyExAsync (Mat src , int op , Mat kernel , {Mat ? dst , Point ? anchor , int iterations = 1 , int borderType = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
MorphologyEx performs advanced morphological transformations.
phaseCorrelate (InputArray src1 , InputArray src2 , {InputArray ? window })
→ (Point2f , double )
Apply phaseCorrelate.
phaseCorrelateAsync (InputArray src1 , InputArray src2 , {InputArray ? window })
→ Future <(Point2f , double ) >
Apply phaseCorrelate.
pointPolygonTest (VecPoint points , Point2f pt , bool measureDist )
→ double
PointPolygonTest performs a point-in-contour test.
pointPolygonTestAsync (VecPoint points , Point2f pt , bool measureDist )
→ Future <double >
PointPolygonTest performs a point-in-contour test.
polylines (InputOutputArray img , VecVecPoint pts , bool isClosed , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Mat
Polylines draws several polygonal curves.
polylinesAsync (InputOutputArray img , VecVecPoint pts , bool isClosed , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Future <Mat >
Polylines draws several polygonal curves.
putText (InputOutputArray img , String text , Point org , int fontFace , double fontScale , Scalar color , {int thickness = 1 , int lineType = LINE_8 , bool bottomLeftOrigin = false })
→ Mat
PutTextWithParams draws a text string.
It renders the specified text string into the img Mat at the location
passed in the "org" param, using the desired font face, font scale,
color, and line thinkness.
putTextAsync (InputOutputArray img , String text , Point org , int fontFace , double fontScale , Scalar color , {int thickness = 1 , int lineType = LINE_8 , bool bottomLeftOrigin = false })
→ Future <Mat >
PutTextWithParams draws a text string.
It renders the specified text string into the img Mat at the location
passed in the "org" param, using the desired font face, font scale,
color, and line thinkness.
pyrDown (Mat src , {Mat ? dst , (int , int ) dstsize = (0, 0) , int borderType = BORDER_DEFAULT })
→ Mat
PyrDown blurs an image and downsamples it.
pyrDownAsync (Mat src , {(int , int ) dstsize = (0, 0) , int borderType = BORDER_DEFAULT })
→ Future <Mat >
PyrDown blurs an image and downsamples it.
pyrUp (Mat src , {Mat ? dst , (int , int ) dstsize = (0, 0) , int borderType = BORDER_DEFAULT })
→ Mat
PyrUp upsamples an image and then blurs it.
pyrUpAsync (Mat src , {Mat ? dst , (int , int ) dstsize = (0, 0) , int borderType = BORDER_DEFAULT })
→ Future <Mat >
PyrUp upsamples an image and then blurs it.
rectangle (InputOutputArray img , Rect rect , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Mat
Rectangle draws a simple, thick, or filled up-right rectangle.
It renders a rectangle with the desired characteristics to the target Mat image.
rectangleAsync (InputOutputArray img , Rect rect , Scalar color , {int thickness = 1 , int lineType = LINE_8 , int shift = 0 })
→ Future <Mat >
Rectangle draws a simple, thick, or filled up-right rectangle.
It renders a rectangle with the desired characteristics to the target Mat image.
remap (InputArray src , InputArray map1 , InputArray map2 , int interpolation , {OutputArray ? dst , int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
Remap applies a generic geometrical transformation to an image.
remapAsync (InputArray src , InputArray map1 , InputArray map2 , int interpolation , {int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
Remap applies a generic geometrical transformation to an image.
resize (InputArray src , (int , int ) dsize , {OutputArray ? dst , double fx = 0 , double fy = 0 , int interpolation = INTER_LINEAR })
→ Mat
Resize resizes an image.
It resizes the image src down to or up to the specified size, storing the
result in dst. Note that src and dst may be the same image. If you wish to
scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise,
if you wish to scale to an explicit size, a non-empty sz may be passed with
zero for both fx and fy.
resizeAsync (InputArray src , (int , int ) dsize , {double fx = 0 , double fy = 0 , int interpolation = INTER_LINEAR })
→ Future <Mat >
Resize resizes an image.
It resizes the image src down to or up to the specified size, storing the
result in dst. Note that src and dst may be the same image. If you wish to
scale by factor, an empty sz may be passed and non-zero fx and fy. Likewise,
if you wish to scale to an explicit size, a non-empty sz may be passed with
zero for both fx and fy.
scharr (Mat src , int ddepth , int dx , int dy , {Mat ? dst , double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Mat
Scharr calculates the first x- or y- image derivative using Scharr operator.
scharrAsync (Mat src , int ddepth , int dx , int dy , {double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
Scharr calculates the first x- or y- image derivative using Scharr operator.
sepFilter2D (InputArray src , int ddepth , InputArray kernelX , InputArray kernelY , {OutputArray ? dst , Point ? anchor , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Mat
SepFilter2D applies a separable linear filter to the image.
sepFilter2DAsync (InputArray src , int ddepth , InputArray kernelX , InputArray kernelY , {Point ? anchor , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
SepFilter2D applies a separable linear filter to the image.
sobel (Mat src , int ddepth , int dx , int dy , {Mat ? dst , int ksize = 3 , double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Mat
Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
sobelAsync (Mat src , int ddepth , int dx , int dy , {int ksize = 3 , double scale = 1 , double delta = 0 , int borderType = BORDER_DEFAULT })
→ Future <Mat >
Sobel calculates the first, second, third, or mixed image derivatives using an extended Sobel operator
spatialGradient (Mat src , {Mat ? dx , Mat ? dy , int ksize = 3 , int borderType = BORDER_DEFAULT })
→ (Mat , Mat )
SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
spatialGradientAsync (Mat src , {int ksize = 3 , int borderType = BORDER_DEFAULT })
→ Future <(Mat , Mat ) >
SpatialGradient calculates the first order image derivative in both x and y using a Sobel operator.
sqrBoxFilter (Mat src , int depth , (int , int ) ksize , {Point ? anchor , bool normalize = true , int borderType = BORDER_DEFAULT , Mat ? dst })
→ Mat
SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
sqrBoxFilterAsync (Mat src , int depth , (int , int ) ksize )
→ Future <Mat >
SqBoxFilter calculates the normalized sum of squares of the pixel values overlapping the filter.
threshold (InputArray src , double thresh , double maxval , int type , {OutputArray ? dst })
→ (double , Mat )
Threshold applies a fixed-level threshold to each array element.
thresholdAsync (InputArray src , double thresh , double maxval , int type )
→ Future <(double , Mat ) >
Threshold applies a fixed-level threshold to each array element.
warpAffine (InputArray src , InputArray M , (int , int ) dsize , {OutputArray ? dst , int flags = INTER_LINEAR , int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
WarpAffine applies an affine transformation to an image.
warpAffineAsync (InputArray src , InputArray M , (int , int ) dsize , {int flags = INTER_LINEAR , int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
WarpAffine applies an affine transformation to an image.
warpPerspective (InputArray src , InputArray M , (int , int ) dsize , {OutputArray ? dst , int flags = INTER_LINEAR , int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Mat
WarpPerspective applies a perspective transformation to an image.
For more parameters please check WarpPerspectiveWithParams.
warpPerspectiveAsync (InputArray src , InputArray M , (int , int ) dsize , {int flags = INTER_LINEAR , int borderMode = BORDER_CONSTANT , Scalar ? borderValue })
→ Future <Mat >
WarpPerspective applies a perspective transformation to an image.
For more parameters please check WarpPerspectiveWithParams.
watershed (InputArray image , InputOutputArray markers )
→ Mat
Watershed performs a marker-based image segmentation using the watershed algorithm.
watershedAsync (InputArray image , InputOutputArray markers )
→ Future <Mat >
Watershed performs a marker-based image segmentation using the watershed algorithm.