A comprehensive Dart library for effortlessly working with music theory concepts, offering an elegant and beautifully crafted API.
Features
- Notes, accidentals, and enharmonic operations
- Intervals, qualities, and circle of fifths
- Chords, scales, harmonic functions, inversions and retrogrades
- Keys, key signatures, and modes
- Frequencies and tuning systems (work in progress)
Usage
Import the package into your Dart code:
import 'package:music_notes/music_notes.dart';
Now, you can use the provided APIs to perform various music theory operations. For more detailed usage instructions and examples, please refer to the API documentation.
Notes
Define a Note
from a BaseNote
and an Accidental
, or using their
shorthand static constants:
const Note(BaseNote.e, Accidental.flat); // E♭
Note.c; // C
Note.d; // D
Note.f; // F
BaseNote
s can be obtained from semitones or ordinal:
BaseNote.fromSemitones(2); // BaseNote.d
BaseNote.fromSemitones(9); // BaseNote.a
BaseNote.fromOrdinal(3); // BaseNote.e
BaseNote.fromOrdinal(7); // BaseNote.b
Alter a Note
with sharp
or flat
:
Note.c.sharp; // C♯
Note.d.flat; // D♭
Note.g.flat.flat; // G𝄫
Note.f.sharp.sharp.sharp; // F𝄪♯
And position them in the octave, resulting in Pitch
es:
Note.f.inOctave(4); // F4
Note.b.flat.inOctave(5); // B♭5
Or parse them in both scientific and Helmholtz notations:
BaseNote.parse('b'); // BaseNote.b
Note.parse('a#'); // A♯
Pitch.parse("g''"); // G5
Pitch.parse('Eb3'); // E♭3
Get their difference in semitones:
BaseNote.c.difference(BaseNote.e); // 4
BaseNote.a.difference(BaseNote.e); // -5
BaseNote.a.positiveDifference(BaseNote.e); // 7
Note.c.difference(Note.e.flat); // 3
Pitch.parse('C').difference(Pitch.parse("c''''")); // 60
Transpose them:
Note.g.flat.transposeBy(-Interval.m3); // E♭
Note.b.inOctave(3).transposeBy(Interval.P5); // F♯4
Respell them by any criteria:
Note.c.sharp.respellByBaseNote(BaseNote.d); // D♭
Note.e.flat.respellByAccidental(Accidental.sharp); // D♯
Note.g.flat.inOctave(3).respellByOrdinalDistance(-1); // F♯3
Note.g.sharp.respelledUpwards; // A♭
Note.a.flat.respelledDownwards; // G♯
Note.b.sharp.inOctave(4).respelledSimple; // C5
Compare two Pitch
es based on their semitones:
Note.c.inOctave(4) < Note.c.inOctave(5); // true
Note.d.inOctave(3) > Note.f.inOctave(4); // false
Note.a.flat.inOctave(5) >= Note.g.sharp.inOctave(5); // true
Know whether two Note
s or Pitch
es are enharmonically equivalent:
Note.f.sharp.isEnharmonicWith(Note.g.flat); // true
Note.c.inOctave(4).isEnharmonicWith(Note.b.sharp.inOctave(3)); // true
Note.a.isEnharmonicWith(Note.b.flat); // false
Represent them as PitchClass
es:
Note.d.flat.toClass(); // {C♯|D♭}
Note.a.inOctave(4).toClass(); // {A}
Perform PitchClass
multiplications (modulo 12):
PitchClass.cSharp * 7; // {G}
PitchClass.d * 7; // {D}
// observe one semitone upwards results in ascending fifths G -> D.
PitchClass.cSharp * 5; // {F}
PitchClass.d * 5; // {A♯|B♭}
// observe one semitone upwards results in ascending fourths F -> B-flat.
Represent them using any notation system:
Note.d.flat
..toString() // D♭
..toString(system: NoteNotation.romance) // Re♭
..toString(system: NoteNotation.german); // Des
Note.b.flat.inOctave(-1).toString(); // B♭-1
Note.c.inOctave(6).toString(system: PitchNotation.helmholtz); // c‴
PitchClass.c.toString(); // {C}
PitchClass.dSharp.toString(); // {D♯|E♭}
PitchClass.f.toString(system: PitchClassNotation.integer); // 5
PitchClass.aSharp.toString(system: PitchClassNotation.integer); // t
Intervals
Create an Interval
:
const Interval.imperfect(Size.tenth, ImperfectQuality.major); // M10
Interval.d5; // d5
Size.sixth.augmented; // A6
Size.eleventh.simple.perfect; // P4
Or parse it from a string:
Interval.parse('m3'); // m3
Interval.parse('P-5'); // P-5
Interval.parse('AA6'); // AA6
Turn it descending:
-Interval.m7; // m-7
Interval.M3.descending(); // M-3
(-Interval.P4).descending(false); // P4
Perform common interval operations:
Interval.m3.inversion; // M6
Interval.A4.inversion; // d5
Interval.m9.inversion; // M7
Interval.m9.simple; // m2
Interval.P11.simple; // P4
(-Interval.M3).simple; // M-3
Interval.P5.isCompound; // false
Interval.M9.isCompound; // true
(-Interval.P11).isCompound; // true
Interval.P5.isDissonant; // false
Interval.d5.isDissonant; // true
Interval.M7.isDissonant; // true
Respell an Interval
by size:
Interval.A4.respellBySize(Size.fifth); // d5
Interval.d3.respellBySize(Size.second); // M2
Calculate the Interval
between two notes:
Note.c.interval(Note.g); // P5
Note.d.interval(Note.f.sharp).inversion; // m6
BaseNote.d.intervalSize(BaseNote.f); // 3
BaseNote.a.intervalSize(BaseNote.e); // 5
Know the intervallic distance between two notes:
Interval.P5.distanceBetween(Note.c, Note.d);
// (2, notes: [Note.c, Note.g, Note.d])
Interval.P4.distanceBetween(Note.b.flat, Note.d);
// (-4, notes: [Note.b.flat, Note.f, Note.d, Note.g, Note.d])
And even explore the circle of fifths or any circle of intervals up to a distance:
Interval.P5.circleFrom(Note.c, distance: 12).toList();
// [C, G, D, A, E, B, F♯, C♯, G♯, D♯, A♯, E♯, B♯]
Note.c.circleOfFifths();
// (flats: [F, B♭, E♭, A♭, D♭, G♭], sharps: [G, D, A, E, B, F♯])
Note.c.flatCircleOfFifths(distance: 3); // [E♭, B♭, F, C, G, D, A]
Note.d.circleOfFifthsDistance; // 2
Note.a.flat.circleOfFifthsDistance; // -4
Note.c.fifthsDistanceWith(Note.e.flat); // -3
Note.b.fifthsDistanceWith(Note.f.sharp); // 1
Know whether two Interval
s are enharmonically equivalent:
Interval.M3.isEnharmonicWith(Interval.d4); // true
Interval.A4.isEnharmonicWith(Interval.d5); // true
Interval.P1.isEnharmonicWith(Interval.m2); // false
Represent them as IntervalClass
es:
Interval.M2.toClass(); // {M2|d3}
Interval.m6.toClass(); // {M3|d4}
Interval.P8.toClass(); // {P1}
Compare two Interval
s based on their semitones:
Interval.m3 < Interval.P5; // true
Interval.m7 <= Interval.P5; // false
-Interval.P4 > Interval.M3; // true
Add, subtract and multiply Interval
s and IntervalClass
es:
Interval.m2 + Interval.M2; // m3
Interval.M2 + Interval.P4; // P5
IntervalClass.tritone + IntervalClass.M2; // {M3|d4}
IntervalClass.M3 + IntervalClass.P4; // {m3}
IntervalClass.P4 - IntervalClass.m3; // {M2|d3}
IntervalClass.P4 * -1; // {P4}
IntervalClass.M2 * 0; // {P1}
IntervalClass.m3 * 2; // {A4|d5}
Represent them as a string:
Interval.m2.toString(); // m2
Interval.A6.toString(); // A6
IntervalClass.M2.toString(); // {M2|d3}
IntervalClass.P4.toString(); // {P4}
IntervalClass.tritone.toString(); // {A4|d5}
Keys
Create a Key
or get it from a given Note
:
const Key(Note.e, TonalMode.minor); // E minor
Note.a.flat.major; // A♭ major
Know its KeySignature
:
Note.d.major.signature; // 2 (F♯ C♯)
Note.e.flat.minor.signature; // -6 (B♭ E♭ A♭ D♭ G♭ C♭)
Whether it is theoretical:
Note.e.major.isTheoretical; // false
Note.a.flat.minor.isTheoretical; // true
And its relative and parallel Key
s:
Note.d.major.relative; // B minor
Note.c.minor.relative; // E♭ major
Note.f.minor.parallel; // F major
Note.c.sharp.major.parallel; // C♯ minor
Represent it using any notation system:
Note.d.flat.major.toString(); // D♭ major
Note.c.major.toString(system: NoteNotation.romance); // Do maggiore
Note.e.flat.minor.toString(system: NoteNotation.german); // es-moll
Key signatures
Create a KeySignature
:
KeySignature.fromDistance(4); // 4 (F♯ C♯ G♯ D♯)
KeySignature([Note.b.flat, Note.e.flat]); // -2 (B♭ E♭)
KeySignature([Note.g.sharp, Note.a.sharp]); // null (G♯ A♯)
Increment them by sharps or flats:
KeySignature.fromDistance(-4).incrementBy(-1); // -3 (B♭ E♭ A♭)
KeySignature([Note.f.sharp, Note.c.sharp]).incrementBy(3);
// 5 (F♯ C♯ G♯ D♯ A♯)
And know its Key
s:
KeySignature([Note.f.sharp]).keys[TonalMode.major]; // G major
KeySignature.empty.keys[TonalMode.minor]; // A minor
Non-canonical key signatures are also supported, although they
return null
when asked about their fifths distance or keys:
KeySignature([Note.a.flat])
..isCanonical // false
..distance // null
..keys; // <TonalMode, Key>{}
Modes
Get each Mode
’s ScalePattern
:
TonalMode.minor.scale; // ScalePattern.minor
ModalMode.locrian.scale; // ScalePattern.locrian
Their Dorian Brightness Quotient:
ModalMode.lydian.brightness; // 3
ModalMode.dorian.brightness; // 0
ModalMode.aeolian.brightness; // -1
Or its mirrored version:
ModalMode.ionian.mirrored; // ModalMode.phrygian
ModalMode.aeolian.mirrored; // ModalMode.mixolydian
Scales
Create a Scale
from a ScalePattern
:
ScalePattern.lydian.on(Note.d); // D Lydian (D E F♯ G♯ A B C♯ D)
ScalePattern.wholeTone.on(Note.f); // F Whole-tone (F G A B C♯ D♯ F)
ScalePattern.majorPentatonic.on(Note.g.flat);
// G♭ Major pentatonic (G♭ A♭ B♭ D♭ E♭ G♭)
Or get it from a Key
:
Note.a.flat.major.scale; // A♭ Major (ionian) (A♭ B♭ C D♭ E♭ F G A♭)
Note.d.minor.scale; // D Natural minor (aeolian) (D E F G A B♭ C D)
Even experiment with any ScaleDegree
or HarmonicFunction
:
ScalePattern.lydian.on(Note.e).degree(ScaleDegree.iv); // A♯
Note.c.major.scale.functionChord(
HarmonicFunction.dominantV / HarmonicFunction.dominantV,
); // D maj. (D F♯ A)
Rearrange any collection of Note
s, Pitch
es or PitchClass
es
as inversion
or retrograde
:
({Note.b, Note.a.sharp, Note.d}).inversion.toSet(); // {B, C, G♯}
({PitchClass.dSharp, PitchClass.g, PitchClass.fSharp}).retrograde.toSet();
// {{F♯|G♭}, {G}, {D♯|E♭}}
Or know its numeric representation:
({PitchClass.b, PitchClass.aSharp, PitchClass.d, PitchClass.e})
..numericRepresentation().toSet() // {0, 11, 3, 5}
..numericRepresentation(reference: PitchClass.d).toSet() // {9, 8, 0, 2}
..deltaNumericRepresentation.toList(); // [0, -1, 4, 2]
Chords
Create a Chord
from a series of Note
s or a ChordPattern
:
Chord([Note.a, Note.c.sharp, Note.e]); // A maj. (A C♯ E)
ChordPattern.augmentedTriad.add11().add13().on(Note.d.sharp);
// D♯ aug. (D♯ F𝄪 A𝄪 G♯ B♯)
Or build it on top of a Note
:
Note.f.minorTriad.add7().add9(ImperfectQuality.minor);
// F min. (F A♭ C E♭ G♭)
Note.e.flat.diminishedTriad.add7().transposeBy(Interval.m2);
// F♭ dim. (F♭ A𝄫 C𝄫 E𝄫)
Or modify its root triad:
Note.g.minorTriad.major; // G maj. (G B D)
Note.f.sharp.majorTriad.add9().diminished; // F♯ dim. (F♯ A C G♯)
Frequencies
Get the Frequency
of a Pitch
:
Note.a.inOctave(4).frequency(); // 440
Note.a.inOctave(4).frequency(temperature: const Celsius(18));
// 438.4619866006409
Create a TuningFork
from a Pitch
and a reference Frequency
,
or using its shorthand static constants:
Note.a.inOctave(4).at(const Frequency(438)); // A438
TuningFork.a440; // A440
TuningFork.c256; // C256
And use it in a TuningSystem
:
Note.b.flat.inOctave(4).frequency(
tuningSystem: const EqualTemperament.edo12(fork: TuningFork.c256),
); // 456.1401436878537
Get the closest Pitch
from a given Frequency
:
const Frequency(432).closestPitch(); // A4-32
const Frequency(314).closestPitch(); // E♭4+16
const Frequency(440).closestPitch(temperature: const Celsius(24)); // A4-12
And combining both frequency
and closestPitch
methods,
the harmonic series of a given Pitch
:
Note.c.inOctave(1).harmonics(upToIndex: 15);
// {C1, C2, G2+2, C3, E3-14, G3+2, A♯3-31, C4, D4+4,
// E4-14, F♯4-49, G4+2, A♭4+41, A♯4-31, B4-12, C5}
Create a ClosestPitch
by adding or subtracting Cent
s to a Pitch
:
Note.f.sharp.inOctave(4) + const Cent(16); // F♯4+16
Note.g.flat.inOctave(5) - const Cent(8.236); // G♭5-8
Or parse a ClosestPitch
from a string:
ClosestPitch.parse('A4'); // A4
ClosestPitch.parse('A4+12.6'); // A4+13
ClosestPitch.parse('E♭3-28'); // E♭3-28
In a nutshell
ScalePattern.lydian // Lydian (M2 M2 M2 m2 M2 M2 m2)
.on(Note.parse('a')) // A Lydian (A B C♯ D♯ E F♯ G♯ A)
.transposeBy(Interval.M2) // B Lydian (B C♯ D♯ E♯ F♯ G♯ A♯ B)
.degree(ScaleDegree.iii) // D♯
.respelledUpwards // E♭
.major // E♭ major
.relative // C minor
.scale // C Natural minor (aeolian) (C D E♭ F G A♭ B♭ C)
.degreeChord(ScaleDegree.v) // G min. (G B♭ D)
.add9(); // G min. (G B♭ D A)
Inspiration
This library is inspired by a range of music theory projects.
Contributing
Contributions are welcome! If you encounter any issues or have suggestions for improvements, please feel free to open an issue or submit a pull request on the GitHub repository.
Star History
License
This package is released under the BSD-3-Clause License.
Libraries
- music_notes
- A simple Dart library that provides a comprehensive set of utilities for working with music theory concepts.
- utils