HttpRule class

gRPC Transcoding

gRPC Transcoding is a feature for mapping between a gRPC method and one or more HTTP REST endpoints. It allows developers to build a single API service that supports both gRPC APIs and REST APIs. Many systems, including Google APIs, Cloud Endpoints, gRPC Gateway, and Envoy proxy support this feature and use it for large scale production services.

HttpRule defines the schema of the gRPC/REST mapping. The mapping specifies how different portions of the gRPC request message are mapped to the URL path, URL query parameters, and HTTP request body. It also controls how the gRPC response message is mapped to the HTTP response body. HttpRule is typically specified as an google.api.http annotation on the gRPC method.

Each mapping specifies a URL path template and an HTTP method. The path template may refer to one or more fields in the gRPC request message, as long as each field is a non-repeated field with a primitive (non-message) type. The path template controls how fields of the request message are mapped to the URL path.

Example:

 service Messaging {
   rpc GetMessage(GetMessageRequest) returns (Message) {
     option (google.api.http) = {
         get: "/v1/{name=messages/*}"
     };
   }
 }
 message GetMessageRequest {
   string name = 1; // Mapped to URL path.
 }
 message Message {
   string text = 1; // The resource content.
 }

This enables an HTTP REST to gRPC mapping as below:

HTTP gRPC
GET /v1/messages/123456 GetMessage(name: "messages/123456")

Any fields in the request message which are not bound by the path template automatically become HTTP query parameters if there is no HTTP request body. For example:

 service Messaging {
   rpc GetMessage(GetMessageRequest) returns (Message) {
     option (google.api.http) = {
         get:"/v1/messages/{message_id}"
     };
   }
 }
 message GetMessageRequest {
   message SubMessage {
     string subfield = 1;
   }
   string message_id = 1; // Mapped to URL path.
   int64 revision = 2;    // Mapped to URL query parameter `revision`.
   SubMessage sub = 3;    // Mapped to URL query parameter `sub.subfield`.
 }

This enables a HTTP JSON to RPC mapping as below:

HTTP gRPC
GET /v1/messages/123456?revision=2&sub.subfield=foo
`GetMessage(message_id: "123456" revision: 2 sub: SubMessage(subfield:
"foo"))`

Note that fields which are mapped to URL query parameters must have a primitive type or a repeated primitive type or a non-repeated message type. In the case of a repeated type, the parameter can be repeated in the URL as ...?param=A&param=B. In the case of a message type, each field of the message is mapped to a separate parameter, such as ...?foo.a=A&foo.b=B&foo.c=C.

For HTTP methods that allow a request body, the body field specifies the mapping. Consider a REST update method on the message resource collection:

 service Messaging {
   rpc UpdateMessage(UpdateMessageRequest) returns (Message) {
     option (google.api.http) = {
       patch: "/v1/messages/{message_id}"
       body: "message"
     };
   }
 }
 message UpdateMessageRequest {
   string message_id = 1; // mapped to the URL
   Message message = 2;   // mapped to the body
 }

The following HTTP JSON to RPC mapping is enabled, where the representation of the JSON in the request body is determined by protos JSON encoding:

HTTP gRPC
PATCH /v1/messages/123456 { "text": "Hi!" } `UpdateMessage(message_id:
"123456" message { text: "Hi!" })`

The special name * can be used in the body mapping to define that every field not bound by the path template should be mapped to the request body. This enables the following alternative definition of the update method:

 service Messaging {
   rpc UpdateMessage(Message) returns (Message) {
     option (google.api.http) = {
       patch: "/v1/messages/{message_id}"
       body: "*"
     };
   }
 }
 message Message {
   string message_id = 1;
   string text = 2;
 }

The following HTTP JSON to RPC mapping is enabled:

HTTP gRPC
PATCH /v1/messages/123456 { "text": "Hi!" } `UpdateMessage(message_id:
"123456" text: "Hi!")`

Note that when using * in the body mapping, it is not possible to have HTTP parameters, as all fields not bound by the path end in the body. This makes this option more rarely used in practice when defining REST APIs. The common usage of * is in custom methods which don't use the URL at all for transferring data.

It is possible to define multiple HTTP methods for one RPC by using the additional_bindings option. Example:

 service Messaging {
   rpc GetMessage(GetMessageRequest) returns (Message) {
     option (google.api.http) = {
       get: "/v1/messages/{message_id}"
       additional_bindings {
         get: "/v1/users/{user_id}/messages/{message_id}"
       }
     };
   }
 }
 message GetMessageRequest {
   string message_id = 1;
   string user_id = 2;
 }

This enables the following two alternative HTTP JSON to RPC mappings:

HTTP gRPC
GET /v1/messages/123456 GetMessage(message_id: "123456")
GET /v1/users/me/messages/123456 `GetMessage(user_id: "me" message_id:
"123456")`

Rules for HTTP mapping

  1. Leaf request fields (recursive expansion nested messages in the request message) are classified into three categories:
    • Fields referred by the path template. They are passed via the URL path.
    • Fields referred by the google.api.HttpRule.body. They are passed via the HTTP request body.
    • All other fields are passed via the URL query parameters, and the parameter name is the field path in the request message. A repeated field can be represented as multiple query parameters under the same name.
  2. If google.api.HttpRule.body is "*", there is no URL query parameter, all fields are passed via URL path and HTTP request body.
  3. If google.api.HttpRule.body is omitted, there is no HTTP request body, all fields are passed via URL path and URL query parameters.

Path template syntax

 Template = "/" Segments [ Verb ] ;
 Segments = Segment { "/" Segment } ;
 Segment  = "*" | "**" | LITERAL | Variable ;
 Variable = "{" FieldPath [ "=" Segments ] "}" ;
 FieldPath = IDENT { "." IDENT } ;
 Verb     = ":" LITERAL ;

The syntax * matches a single URL path segment. The syntax ** matches zero or more URL path segments, which must be the last part of the URL path except the Verb.

The syntax Variable matches part of the URL path as specified by its template. A variable template must not contain other variables. If a variable matches a single path segment, its template may be omitted, e.g. {var} is equivalent to {var=*}.

The syntax LITERAL matches literal text in the URL path. If the LITERAL contains any reserved character, such characters should be percent-encoded before the matching.

If a variable contains exactly one path segment, such as "{var}" or "{var=*}", when such a variable is expanded into a URL path on the client side, all characters except [-_.~0-9a-zA-Z] are percent-encoded. The server side does the reverse decoding. Such variables show up in the Discovery Document as {var}.

If a variable contains multiple path segments, such as "{var=foo/*}" or "{var=**}", when such a variable is expanded into a URL path on the client side, all characters except [-_.~/0-9a-zA-Z] are percent-encoded. The server side does the reverse decoding, except "%2F" and "%2f" are left unchanged. Such variables show up in the Discovery Document as {+var}.

Using gRPC API Service Configuration

gRPC API Service Configuration (service config) is a configuration language for configuring a gRPC service to become a user-facing product. The service config is simply the YAML representation of the google.api.Service proto message.

As an alternative to annotating your proto file, you can configure gRPC transcoding in your service config YAML files. You do this by specifying a HttpRule that maps the gRPC method to a REST endpoint, achieving the same effect as the proto annotation. This can be particularly useful if you have a proto that is reused in multiple services. Note that any transcoding specified in the service config will override any matching transcoding configuration in the proto.

Example:

 http:
   rules:
     # Selects a gRPC method and applies HttpRule to it.
     - selector: example.v1.Messaging.GetMessage
       get: /v1/messages/{message_id}/{sub.subfield}

Special notes

When gRPC Transcoding is used to map a gRPC to JSON REST endpoints, the proto to JSON conversion must follow the proto3 specification.

While the single segment variable follows the semantics of RFC 6570 Section 3.2.2 Simple String Expansion, the multi segment variable does not follow RFC 6570 Section 3.2.3 Reserved Expansion. The reason is that the Reserved Expansion does not expand special characters like ? and #, which would lead to invalid URLs. As the result, gRPC Transcoding uses a custom encoding for multi segment variables.

The path variables must not refer to any repeated or mapped field, because client libraries are not capable of handling such variable expansion.

The path variables must not capture the leading "/" character. The reason is that the most common use case "{var}" does not capture the leading "/" character. For consistency, all path variables must share the same behavior.

Repeated message fields must not be mapped to URL query parameters, because no client library can support such complicated mapping.

If an API needs to use a JSON array for request or response body, it can map the request or response body to a repeated field. However, some gRPC Transcoding implementations may not support this feature.

Inheritance
  • Object
  • GeneratedMessage
  • HttpRule

Constructors

HttpRule({String? selector, String? get, String? put, String? post, String? delete, String? patch, String? body, CustomHttpPattern? custom, Iterable<HttpRule>? additionalBindings, String? responseBody})
factory
HttpRule.fromBuffer(List<int> i, [ExtensionRegistry r = $pb.ExtensionRegistry.EMPTY])
factory
HttpRule.fromJson(String i, [ExtensionRegistry r = $pb.ExtensionRegistry.EMPTY])
factory

Properties

additionalBindings List<HttpRule>
Additional HTTP bindings for the selector. Nested bindings must not contain an additional_bindings field themselves (that is, the nesting may only be one level deep).
no setter
body String
The name of the request field whose value is mapped to the HTTP request body, or * for mapping all request fields not captured by the path pattern to the HTTP body, or omitted for not having any HTTP request body.
getter/setter pair
custom CustomHttpPattern
The custom pattern is used for specifying an HTTP method that is not included in the pattern field, such as HEAD, or "*" to leave the HTTP method unspecified for this rule. The wild-card rule is useful for services that provide content to Web (HTML) clients.
getter/setter pair
delete String
Maps to HTTP DELETE. Used for deleting a resource.
getter/setter pair
eventPlugin → EventPlugin?
Subclasses can override this getter to be notified of changes to protobuf fields.
no setterinherited
get String
Maps to HTTP GET. Used for listing and getting information about resources.
getter/setter pair
hashCode int
Calculates a hash code based on the contents of the protobuf.
no setterinherited
info_ → BuilderInfo
no setteroverride
isFrozen bool
Returns true if this message is marked read-only. Otherwise false.
no setterinherited
patch String
Maps to HTTP PATCH. Used for updating a resource.
getter/setter pair
post String
Maps to HTTP POST. Used for creating a resource or performing an action.
getter/setter pair
put String
Maps to HTTP PUT. Used for replacing a resource.
getter/setter pair
responseBody String
Optional. The name of the response field whose value is mapped to the HTTP response body. When omitted, the entire response message will be used as the HTTP response body.
getter/setter pair
runtimeType Type
A representation of the runtime type of the object.
no setterinherited
selector String
Selects a method to which this rule applies.
getter/setter pair
unknownFields → UnknownFieldSet
no setterinherited

Methods

addExtension(Extension extension, Object? value) → void
Adds an extension field value to a repeated field.
inherited
check() → void
inherited
clear() → void
Clears all data that was set in this message.
inherited
clearBody() → void
clearCustom() → void
clearDelete() → void
clearExtension(Extension extension) → void
Clears an extension field and also removes the extension.
inherited
clearField(int tagNumber) → void
Clears the contents of a given field.
inherited
clearGet() → void
clearPatch() → void
clearPattern() → void
clearPost() → void
clearPut() → void
clearResponseBody() → void
clearSelector() → void
clone() HttpRule
Creates a deep copy of the fields in this message. (The generated code uses mergeFromMessage.)
override
copyWith(void updates(HttpRule)) HttpRule
Apply updates to a copy of this message.
override
createEmptyInstance() HttpRule
Creates an empty instance of the same message type as this.
override
createMapField<K, V>(int tagNumber, MapFieldInfo<K, V> fi) Map<K, V>
Creates a Map representing a map field.
inherited
createRepeatedField<T>(int tagNumber, FieldInfo<T> fi) List<T>
Creates List implementing a mutable repeated field.
inherited
ensureCustom() CustomHttpPattern
extensionsAreInitialized() bool
inherited
freeze() → GeneratedMessage
Make this message read-only.
inherited
getDefaultForField(int tagNumber) → dynamic
Returns the default value for the given field.
inherited
getExtension(Extension extension) → dynamic
Returns the value of extension.
inherited
getField(int tagNumber) → dynamic
Returns the value of the field associated with tagNumber, or the default value if it is not set.
inherited
getFieldOrNull(int tagNumber) → dynamic
Returns the value of a field, ignoring any defaults.
inherited
getTagNumber(String fieldName) int?
inherited
hasBody() bool
hasCustom() bool
hasDelete() bool
hasExtension(Extension extension) bool
Returns true if a value of extension is present.
inherited
hasField(int tagNumber) bool
Whether this message has a field associated with tagNumber.
inherited
hasGet() bool
hasPatch() bool
hasPost() bool
hasPut() bool
hasRequiredFields() bool
Whether the message has required fields.
inherited
hasResponseBody() bool
hasSelector() bool
isInitialized() bool
Whether all required fields in the message and embedded messages are set.
inherited
mergeFromBuffer(List<int> input, [ExtensionRegistry extensionRegistry = ExtensionRegistry.EMPTY]) → void
Merges serialized protocol buffer data into this message.
inherited
mergeFromCodedBufferReader(CodedBufferReader input, [ExtensionRegistry extensionRegistry = ExtensionRegistry.EMPTY]) → void
inherited
mergeFromJson(String data, [ExtensionRegistry extensionRegistry = ExtensionRegistry.EMPTY]) → void
Merges field values from data, a JSON object, encoded as described by GeneratedMessage.writeToJson.
inherited
mergeFromJsonMap(Map<String, dynamic> json, [ExtensionRegistry extensionRegistry = ExtensionRegistry.EMPTY]) → void
Merges field values from a JSON object represented as a Dart map.
inherited
mergeFromMessage(GeneratedMessage other) → void
Merges the contents of the other into this message.
inherited
mergeFromProto3Json(Object? json, {TypeRegistry typeRegistry = const TypeRegistry.empty(), bool ignoreUnknownFields = false, bool supportNamesWithUnderscores = true, bool permissiveEnums = false}) → void
Merges field values from json, a JSON object using proto3 encoding.
inherited
mergeUnknownFields(UnknownFieldSet unknownFieldSet) → void
inherited
noSuchMethod(Invocation invocation) → dynamic
Invoked when a nonexistent method or property is accessed.
inherited
setExtension(Extension extension, Object value) → void
Sets the value of a non-repeated extension field to value.
inherited
setField(int tagNumber, Object value) → void
Sets the value of a field by its tagNumber.
inherited
toBuilder() → GeneratedMessage
Creates a writable, shallow copy of this message.
inherited
toDebugString() String
Returns a String representation of this message.
inherited
toProto3Json({TypeRegistry typeRegistry = const TypeRegistry.empty()}) Object?
Returns an Object representing Proto3 JSON serialization of this.
inherited
toString() String
Returns a String representation of this message.
inherited
whichPattern() HttpRule_Pattern
writeToBuffer() Uint8List
inherited
writeToCodedBufferWriter(CodedBufferWriter output) → void
inherited
writeToJson() String
Returns a JSON string that encodes this message.
inherited
writeToJsonMap() Map<String, dynamic>
Returns the JSON encoding of this message as a Dart Map.
inherited

Operators

operator ==(Object other) bool
The equality operator.
inherited

Static Methods

create() HttpRule
createRepeated() → PbList<HttpRule>
getDefault() HttpRule