KalmanFilterAsync extension

KalmanFilter implements a standard Kalman filter http://en.wikipedia.org/wiki/Kalman_filter. However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get an extended Kalman filter functionality.

For further details, please see: https://docs.opencv.org/4.6.0/dd/d6a/classcv_1_1KalmanFilter.html

on

Methods

correctAsync(Mat measurement) Future<Mat>
getControlMatrix() Future<Mat>
getErrorCovPost() Future<Mat>
getErrorCovPre() Future<Mat>
getGain() Future<Mat>
getMeasurementMatrix() Future<Mat>
getMeasurementNoiseCov() Future<Mat>
getProcessNoiseCov() Future<Mat>
getStatePost() Future<Mat>
getStatePre() Future<Mat>
getTemp1() Future<Mat>
getTemp2() Future<Mat>
getTemp3() Future<Mat>
getTemp4() Future<Mat>
getTemp5() Future<Mat>
getTransitionMatrix() Future<Mat>
initAsync(int dynamParams, int measureParams, {int controlParams = 0, int type = MatType.CV_32F}) Future<void>
predictAsync({Mat? control}) Future<Mat>
setControlMatrix(Mat m) Future<void>
setErrorCovPost(Mat m) Future<void>
setErrorCovPre(Mat m) Future<void>
setGain(Mat m) Future<void>
setMeasurementMatrix(Mat m) Future<void>
setMeasurementNoiseCov(Mat m) Future<void>
setProcessNoiseCov(Mat m) Future<void>
setStatePost(Mat m) Future<void>
setStatePre(Mat m) Future<void>
setTransitionMatrix(Mat m) Future<void>

Static Methods

createAsync(int dynamParams, int measureParams, {int controlParams = 0, int type = MatType.CV_32F}) Future<KalmanFilter>