edwards25519 library

Classes

CachedGroupElement
CompletedGroupElement
ExtendedGroupElement
FieldElement
PreComputedGroupElement
ProjectiveGroupElement
Group elements are members of the elliptic curve -x^2 + y^2 = 1 + d * x^2 * y^2 where d = -121665/121666.

Properties

order List<int>
order is the order of Curve25519 in little-endian form.
getter/setter pair
zero FieldElement
getter/setter pair

Functions

equal(int b, int c) int
equal returns 1 if b == c and 0 otherwise, assuming that b and c are non-negative.
FeAdd(FieldElement dst, FieldElement a, FieldElement b) → void
FeCMove(FieldElement f, FieldElement g, int b) → void
Replace (f,g) with (g,g) if b == 1; replace (f,g) with (f,g) if b == 0.
FeCombine(FieldElement h, int h0, int h1, int h2, int h3, int h4, int h5, int h6, int h7, int h8, int h9) → void
FeCopy(FieldElement dst, FieldElement src) → void
FeFromBytes(FieldElement dst, Uint8List src) → void
FeInvert(FieldElement out, FieldElement z) → void
FeIsNegative(FieldElement f) int
FeIsNonZero(FieldElement f) int
FeMul(FieldElement h, dynamic f, dynamic g) → void
FeMul calculates h = f * g Can overlap h with f or g.
FeNeg(FieldElement h, FieldElement f) → void
FeNeg sets h = -f
FeOne(FieldElement fe) → void
fePow22523(FieldElement out, FieldElement z) → void
feSquare(dynamic f) List<int?>
FeSquare(FieldElement h, FieldElement f) → void
FeSquare calculates h = f*f. Can overlap h with f.
FeSquare2(FieldElement h, FieldElement f) → void
FeSquare2 sets h = 2 * f * f
FeSub(FieldElement dst, FieldElement a, FieldElement b) → void
FeToBytes(Uint8List s, FieldElement h) → void
FeToBytes marshals h to s. Preconditions: |h| bounded by 1.12^25,1.12^24,1.12^25,1.12^24,etc.
FeZero(FieldElement fe) → void
fieldElementCopy(FieldElement src, int srcPos, FieldElement dest, int destPos, int length) → void
fieldElementFullCopy(FieldElement src, FieldElement dest) → void
geAdd(CompletedGroupElement r, ExtendedGroupElement p, CachedGroupElement q) → void
GeDoubleScalarMultVartime(ProjectiveGroupElement r, Uint8List a, ExtendedGroupElement A, Uint8List b) → void
GeDoubleScalarMultVartime sets r = aA + bB where a = a0+256a1+...+256^31 a31. and b = b0+256b1+...+256^31 b31. B is the Ed25519 base point (x,4/5) with x positive.
geMixedAdd(CompletedGroupElement r, ExtendedGroupElement p, PreComputedGroupElement q) → void
geMixedSub(CompletedGroupElement r, ExtendedGroupElement p, PreComputedGroupElement q) → void
GeScalarMultBase(ExtendedGroupElement h, Uint8List a) → void
GeScalarMultBase computes h = aB, where a = a0+256a1+...+256^31 a31 B is the Ed25519 base point (x,4/5) with x positive.
GeScalarMultVartime(ProjectiveGroupElement r, Uint8List a, ExtendedGroupElement A) → void
geSub(CompletedGroupElement r, ExtendedGroupElement p, CachedGroupElement q) → void
InvertModL(Uint8List z) Uint8List
///////////////////SPACEMESH SPECIFIC////////////////////////
load3(Uint8List input) int
load4(Uint8List input) int
multModL(dynamic out, dynamic z, Uint8List w) → void
negative(int b) int
negative returns 1 if b < 0 and 0 otherwise.
PreComputedGroupElementCMove(PreComputedGroupElement t, PreComputedGroupElement u, int b) → void
ScMinimal(Uint8List scalar) bool
ScMinimal returns true if the given scalar is less than the order of the curve.
ScMul(Uint8List s, Uint8List a, Uint8List b) → void
ScMulAdd(Uint8List s, Uint8List a, Uint8List b, Uint8List c) → void
The scalars are GF(2^252 + 27742317777372353535851937790883648493). Input: a0+256a1+...+256^31a31 = a b0+256b1+...+256^31b31 = b c0+256c1+...+256^31c31 = c
ScReduce(Uint8List out, Uint8List s) → void
Input: s0+256s1+...+256^63s63 = s
selectPoint(PreComputedGroupElement t, int pos, int b) → void
slide(Int8List r, Uint8List a) → void
squareModL(dynamic out, Uint8List z) → void
Uint64(Uint8List b) int