dleqProve method
Generates a Discrete Logarithm Equality Proof (DLEQ) for a Verifiable Random Function (VRF) output.
This method generates a DLEQ proof for a given VRF output, ensuring the equality of discrete logarithms of specific points in the VRF computation.
Parameters:
out
: AVRFInOut
containing the VRF output to prove.kusamaVRF
(optional): A boolean indicating whether to include the public key in the DLEQ proof. Default istrue
for Kusama VRF compatibility.nonceGenerator
(optional): A function that generates a nonce. Default is a function that generates a random 64-byte nonce.
Returns:
A VRFProof
representing the DLEQ proof.
Example Usage:
VRFInOut vrfOutput = ...;
SchnorrkelSecretKey secretKey = ...;
var dleqProof = secretKey.dleqProve(vrfOutput);
The dleqProve
method generates a DLEQ proof for a VRF output, ensuring the equality of discrete logarithms between
specific points in the VRF computation. It returns a VRFProof
instance.
Implementation
VRFProof dleqProve(VRFInOut out,
{bool kusamaVRF = true, GenerateRandom? nonceGenerator}) {
final script = MerlinTranscript("VRF");
script.additionalData("proto-name".codeUnits, "DLEQProof".codeUnits);
script.additionalData("vrf:h".codeUnits, out.input);
if (!kusamaVRF) {
script.additionalData("vrf:pk".codeUnits, publicKey().toBytes());
}
final nonce = nonceGenerator?.call(64) ?? QuickCrypto.generateRandom(64);
if (nonce.length != 64) {
throw ArgumentException("invalid random bytes length");
}
final n = Ed25519Utils.scalarReduce(nonce);
final scalar = BigintUtils.fromBytes(n, byteOrder: Endian.little);
final mult =
RistrettoPoint.fromEdwardsPoint(Curves.generatorED25519 * scalar);
script.additionalData("vrf:R=g^r".codeUnits, mult.toBytes());
final inputPoint = RistrettoPoint.fromBytes(out.input);
final hr = inputPoint * scalar;
script.additionalData("vrf:h^r".codeUnits, hr.toBytes());
if (kusamaVRF) {
script.additionalData("vrf:pk".codeUnits, publicKey().toBytes());
}
script.additionalData("vrf:h^sk".codeUnits, out.output);
final c = script.toBytesWithReduceScalar("prove".codeUnits, 64);
final multiply = ristretto_tools.mul(c, key());
final s = ristretto_tools.sub(n, multiply);
return VRFProof._(c, s);
}