createDataSourceFromRedshift method
- required String dataSourceId,
- required RedshiftDataSpec dataSpec,
- required String roleARN,
- bool? computeStatistics,
- String? dataSourceName,
Creates a DataSource
from a database hosted on an Amazon
Redshift cluster. A DataSource
references data that can be
used to perform either CreateMLModel
,
CreateEvaluation
, or CreateBatchPrediction
operations.
CreateDataSourceFromRedshift
is an asynchronous operation. In
response to CreateDataSourceFromRedshift
, Amazon Machine
Learning (Amazon ML) immediately returns and sets the
DataSource
status to PENDING
. After the
DataSource
is created and ready for use, Amazon ML sets the
Status
parameter to COMPLETED
.
DataSource
in COMPLETED
or PENDING
states can be used to perform only CreateMLModel
,
CreateEvaluation
, or CreateBatchPrediction
operations.
If Amazon ML can't accept the input source, it sets the
Status
parameter to FAILED
and includes an error
message in the Message
attribute of the
GetDataSource
operation response.
The observations should be contained in the database hosted on an Amazon
Redshift cluster and should be specified by a SelectSqlQuery
query. Amazon ML executes an Unload
command in Amazon
Redshift to transfer the result set of the SelectSqlQuery
query to S3StagingLocation
.
After the DataSource
has been created, it's ready for use in
evaluations and batch predictions. If you plan to use the
DataSource
to train an MLModel
, the
DataSource
also requires a recipe. A recipe describes how
each input variable will be used in training an MLModel
. Will
the variable be included or excluded from training? Will the variable be
manipulated; for example, will it be combined with another variable or
will it be split apart into word combinations? The recipe provides answers
to these questions.
GetDataSource
for an existing
datasource and copy the values to a CreateDataSource
call.
Change the settings that you want to change and make sure that all
required fields have the appropriate values.
May throw [InvalidInputException].
May throw [InternalServerException].
May throw [IdempotentParameterMismatchException].
Parameter [dataSourceId] :
A user-supplied ID that uniquely identifies the DataSource
.
Parameter [dataSpec] :
The data specification of an Amazon Redshift DataSource
:
-
DatabaseInformation -
-
DatabaseName
- The name of the Amazon Redshift database. -
ClusterIdentifier
- The unique ID for the Amazon Redshift cluster.
-
- DatabaseCredentials - The AWS Identity and Access Management (IAM) credentials that are used to connect to the Amazon Redshift database.
-
SelectSqlQuery - The query that is used to retrieve the observation data
for the
Datasource
. -
S3StagingLocation - The Amazon Simple Storage Service (Amazon S3) location
for staging Amazon Redshift data. The data retrieved from Amazon Redshift
using the
SelectSqlQuery
query is stored in this location. -
DataSchemaUri - The Amazon S3 location of the
DataSchema
. -
DataSchema - A JSON string representing the schema. This is not required
if
DataSchemaUri
is specified. -
DataRearrangement - A JSON string that represents the splitting and
rearrangement requirements for the
DataSource
. Sample -"{\"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"
-
A security group to allow Amazon ML to execute the
SelectSqlQuery
query on an Amazon Redshift cluster -
An Amazon S3 bucket policy to grant Amazon ML read/write permissions on
the
S3StagingLocation
DataSource
. The statistics are
generated from the observation data referenced by a
DataSource
. Amazon ML uses the statistics internally during
MLModel
training. This parameter must be set to
true
if the DataSource
needs to be used for
MLModel
training.
Parameter [dataSourceName] :
A user-supplied name or description of the DataSource
.
Implementation
Future<CreateDataSourceFromRedshiftOutput> createDataSourceFromRedshift({
required String dataSourceId,
required RedshiftDataSpec dataSpec,
required String roleARN,
bool? computeStatistics,
String? dataSourceName,
}) async {
ArgumentError.checkNotNull(dataSourceId, 'dataSourceId');
_s.validateStringLength(
'dataSourceId',
dataSourceId,
1,
64,
isRequired: true,
);
ArgumentError.checkNotNull(dataSpec, 'dataSpec');
ArgumentError.checkNotNull(roleARN, 'roleARN');
_s.validateStringLength(
'roleARN',
roleARN,
1,
110,
isRequired: true,
);
_s.validateStringLength(
'dataSourceName',
dataSourceName,
0,
1024,
);
final headers = <String, String>{
'Content-Type': 'application/x-amz-json-1.1',
'X-Amz-Target': 'AmazonML_20141212.CreateDataSourceFromRedshift'
};
final jsonResponse = await _protocol.send(
method: 'POST',
requestUri: '/',
exceptionFnMap: _exceptionFns,
// TODO queryParams
headers: headers,
payload: {
'DataSourceId': dataSourceId,
'DataSpec': dataSpec,
'RoleARN': roleARN,
if (computeStatistics != null) 'ComputeStatistics': computeStatistics,
if (dataSourceName != null) 'DataSourceName': dataSourceName,
},
);
return CreateDataSourceFromRedshiftOutput.fromJson(jsonResponse.body);
}