MachineLearning class
Definition of the public APIs exposed by Amazon Machine Learning
Constructors
- MachineLearning({required String region, AwsClientCredentials? credentials, AwsClientCredentialsProvider? credentialsProvider, Client? client, String? endpointUrl})
Properties
- hashCode → int
-
The hash code for this object.
no setterinherited
- runtimeType → Type
-
A representation of the runtime type of the object.
no setterinherited
Methods
-
addTags(
{required String resourceId, required TaggableResourceType resourceType, required List< Tag> tags}) → Future<AddTagsOutput> -
Adds one or more tags to an object, up to a limit of 10. Each tag consists
of a key and an optional value. If you add a tag using a key that is
already associated with the ML object,
AddTags
updates the tag's value. -
close(
) → void - Closes the internal HTTP client if none was provided at creation. If a client was passed as a constructor argument, this becomes a noop.
-
createBatchPrediction(
{required String batchPredictionDataSourceId, required String batchPredictionId, required String mLModelId, required String outputUri, String? batchPredictionName}) → Future< CreateBatchPredictionOutput> -
Generates predictions for a group of observations. The observations to
process exist in one or more data files referenced by a
DataSource
. This operation creates a newBatchPrediction
, and uses anMLModel
and the data files referenced by theDataSource
as information sources. -
createDataSourceFromRDS(
{required String dataSourceId, required RDSDataSpec rDSData, required String roleARN, bool? computeStatistics, String? dataSourceName}) → Future< CreateDataSourceFromRDSOutput> -
Creates a
DataSource
object from an Amazon Relational Database Service (Amazon RDS). ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations. -
createDataSourceFromRedshift(
{required String dataSourceId, required RedshiftDataSpec dataSpec, required String roleARN, bool? computeStatistics, String? dataSourceName}) → Future< CreateDataSourceFromRedshiftOutput> -
Creates a
DataSource
from a database hosted on an Amazon Redshift cluster. ADataSource
references data that can be used to perform eitherCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations. -
createDataSourceFromS3(
{required String dataSourceId, required S3DataSpec dataSpec, bool? computeStatistics, String? dataSourceName}) → Future< CreateDataSourceFromS3Output> -
Creates a
DataSource
object. ADataSource
references data that can be used to performCreateMLModel
,CreateEvaluation
, orCreateBatchPrediction
operations. -
createEvaluation(
{required String evaluationDataSourceId, required String evaluationId, required String mLModelId, String? evaluationName}) → Future< CreateEvaluationOutput> -
Creates a new
Evaluation
of anMLModel
. AnMLModel
is evaluated on a set of observations associated to aDataSource
. Like aDataSource
for anMLModel
, theDataSource
for anEvaluation
contains values for theTarget Variable
. TheEvaluation
compares the predicted result for each observation to the actual outcome and provides a summary so that you know how effective theMLModel
functions on the test data. Evaluation generates a relevant performance metric, such as BinaryAUC, RegressionRMSE or MulticlassAvgFScore based on the correspondingMLModelType
:BINARY
,REGRESSION
orMULTICLASS
. -
createMLModel(
{required String mLModelId, required MLModelType mLModelType, required String trainingDataSourceId, String? mLModelName, Map< String, String> ? parameters, String? recipe, String? recipeUri}) → Future<CreateMLModelOutput> -
Creates a new
MLModel
using theDataSource
and the recipe as information sources. -
createRealtimeEndpoint(
{required String mLModelId}) → Future< CreateRealtimeEndpointOutput> -
Creates a real-time endpoint for the
MLModel
. The endpoint contains the URI of theMLModel
; that is, the location to send real-time prediction requests for the specifiedMLModel
. -
deleteBatchPrediction(
{required String batchPredictionId}) → Future< DeleteBatchPredictionOutput> -
Assigns the DELETED status to a
BatchPrediction
, rendering it unusable. -
deleteDataSource(
{required String dataSourceId}) → Future< DeleteDataSourceOutput> -
Assigns the DELETED status to a
DataSource
, rendering it unusable. -
deleteEvaluation(
{required String evaluationId}) → Future< DeleteEvaluationOutput> -
Assigns the
DELETED
status to anEvaluation
, rendering it unusable. -
deleteMLModel(
{required String mLModelId}) → Future< DeleteMLModelOutput> -
Assigns the
DELETED
status to anMLModel
, rendering it unusable. -
deleteRealtimeEndpoint(
{required String mLModelId}) → Future< DeleteRealtimeEndpointOutput> -
Deletes a real time endpoint of an
MLModel
. -
deleteTags(
{required String resourceId, required TaggableResourceType resourceType, required List< String> tagKeys}) → Future<DeleteTagsOutput> - Deletes the specified tags associated with an ML object. After this operation is complete, you can't recover deleted tags.
-
describeBatchPredictions(
{String? eq, BatchPredictionFilterVariable? filterVariable, String? ge, String? gt, String? le, String? lt, int? limit, String? ne, String? nextToken, String? prefix, SortOrder? sortOrder}) → Future< DescribeBatchPredictionsOutput> -
Returns a list of
BatchPrediction
operations that match the search criteria in the request. -
describeDataSources(
{String? eq, DataSourceFilterVariable? filterVariable, String? ge, String? gt, String? le, String? lt, int? limit, String? ne, String? nextToken, String? prefix, SortOrder? sortOrder}) → Future< DescribeDataSourcesOutput> -
Returns a list of
DataSource
that match the search criteria in the request. -
describeEvaluations(
{String? eq, EvaluationFilterVariable? filterVariable, String? ge, String? gt, String? le, String? lt, int? limit, String? ne, String? nextToken, String? prefix, SortOrder? sortOrder}) → Future< DescribeEvaluationsOutput> -
Returns a list of
DescribeEvaluations
that match the search criteria in the request. -
describeMLModels(
{String? eq, MLModelFilterVariable? filterVariable, String? ge, String? gt, String? le, String? lt, int? limit, String? ne, String? nextToken, String? prefix, SortOrder? sortOrder}) → Future< DescribeMLModelsOutput> -
Returns a list of
MLModel
that match the search criteria in the request. -
describeTags(
{required String resourceId, required TaggableResourceType resourceType}) → Future< DescribeTagsOutput> - Describes one or more of the tags for your Amazon ML object.
-
getBatchPrediction(
{required String batchPredictionId}) → Future< GetBatchPredictionOutput> -
Returns a
BatchPrediction
that includes detailed metadata, status, and data file information for aBatch Prediction
request. -
getDataSource(
{required String dataSourceId, bool? verbose}) → Future< GetDataSourceOutput> -
Returns a
DataSource
that includes metadata and data file information, as well as the current status of theDataSource
. -
getEvaluation(
{required String evaluationId}) → Future< GetEvaluationOutput> -
Returns an
Evaluation
that includes metadata as well as the current status of theEvaluation
. -
getMLModel(
{required String mLModelId, bool? verbose}) → Future< GetMLModelOutput> -
Returns an
MLModel
that includes detailed metadata, data source information, and the current status of theMLModel
. -
noSuchMethod(
Invocation invocation) → dynamic -
Invoked when a nonexistent method or property is accessed.
inherited
-
predict(
{required String mLModelId, required String predictEndpoint, required Map< String, String> record}) → Future<PredictOutput> -
Generates a prediction for the observation using the specified
ML Model
. -
toString(
) → String -
A string representation of this object.
inherited
-
updateBatchPrediction(
{required String batchPredictionId, required String batchPredictionName}) → Future< UpdateBatchPredictionOutput> -
Updates the
BatchPredictionName
of aBatchPrediction
. -
updateDataSource(
{required String dataSourceId, required String dataSourceName}) → Future< UpdateDataSourceOutput> -
Updates the
DataSourceName
of aDataSource
. -
updateEvaluation(
{required String evaluationId, required String evaluationName}) → Future< UpdateEvaluationOutput> -
Updates the
EvaluationName
of anEvaluation
. -
updateMLModel(
{required String mLModelId, String? mLModelName, double? scoreThreshold}) → Future< UpdateMLModelOutput> -
Updates the
MLModelName
and theScoreThreshold
of anMLModel
.
Operators
-
operator ==(
Object other) → bool -
The equality operator.
inherited