🚀 YOLO Flutter - Ultralytics Official Plugin
Welcome to the Ultralytics YOLO Flutter plugin! Integrate cutting-edge Ultralytics YOLO computer vision models seamlessly into your Flutter mobile applications. This plugin at https://pub.dev/packages/ultralytics_yolo supports both Android and iOS platforms, offering APIs for object detection, image classification, instance segmentation, pose estimation, and oriented bounding box detection.
✨ Why Choose YOLO Flutter?
| Feature | Android | iOS | 
|---|---|---|
| Detection | ✅ | ✅ | 
| Classification | ✅ | ✅ | 
| Segmentation | ✅ | ✅ | 
| Pose Estimation | ✅ | ✅ | 
| OBB Detection | ✅ | ✅ | 
- Official Ultralytics Plugin - Direct from YOLO creators
 - Real-time Performance - Up to 30 FPS on modern devices
 - 5 AI Tasks - Detection, Segmentation, Classification, Pose, OBB
 - Cross-platform - iOS & Android with single codebase
 - Production Ready - Performance controls & optimization built-in
 - Dynamic Model Loading - Switch models on-the-fly without restarting camera
 - Frame Capture - Capture frames with detection overlays for sharing or saving
 
⚡ Quick Start (2 minutes)
import 'package:ultralytics_yolo/ultralytics_yolo.dart';
// Add this widget and you're detecting objects!
YOLOView(
  modelPath: 'yolo11n',
  task: YOLOTask.detect,
  onResult: (results) {
    print('Found ${results.length} objects!');
    for (final result in results) {
      print('${result.className}: ${result.confidence}');
    }
  },
)
▶️ Try the Live Demo | 📖 Full Setup Guide
🎯 What You Can Build
| Task | Description | Use Cases | Performance | 
|---|---|---|---|
| Detection | Find objects & their locations | Security, Inventory, Shopping | 25-30 FPS | 
| Segmentation | Pixel-perfect object masks | Photo editing, | 15-25 FPS | 
| Classification | Identify image categories | Content moderation, Tagging | 30+ FPS | 
| Pose Estimation | Human pose & keypoints | Fitness apps, Motion capture | 20-30 FPS | 
| OBB Detection | Rotated bounding boxes | Aerial imagery | 20-25 FPS | 
📱 See Examples → | ⚡ Performance Guide →
🚀 Installation
1. Add to pubspec.yaml
dependencies:
  ultralytics_yolo: ^0.1.26
2. Install dependencies
flutter pub get
3. Add a model
You can get the model in one of the following ways:
- 
Download from the release assets of this repository
 - 
Get it from Ultralytics HUB
 - 
Export it from Ultralytics/ultralytics (CoreML/TFLite)
 
Export Models for iOS
# Detection REQUIRES nms=True
YOLO("yolo11n.pt").export(format="coreml", nms=True)
# All other tasks use nms=False (default)
YOLO("yolo11n-seg.pt").export(format="coreml")
**[📥 Download Models](doc/install.md#models)** |
Bundle the model with your app using the following method.
For iOS: Drag and drop mlpackage/mlmodel directly into **ios/Runner.xcworkspace** and set target to Runner.
For Android: Create a folder called **android/app/src/main/assets** and place tflite files in it.
### 4. Platform-Specific Setup
**[🔧 Setup Guide](doc/install.md)**
## 🏆 Trusted by Developers
- ✅ **Official Ultralytics Plugin** - Maintained by YOLO creators
- ✅ **Production Tested** - Used in apps with many users
- ✅ **Active Development** - Regular updates & feature additions
- ✅ **Community Driven** - Open source with responsive support
**Performance**: Up to 30 FPS on modern devices | **Model Size**: Optimized from 6MB | **Platforms**: iOS 13.0+ & Android API 21+
## 📚 Documentation
| Guide                                              | Description                       | For             |
| -------------------------------------------------- | --------------------------------- | --------------- |
| **[Installation Guide](doc/install.md)**           | Installation, setup, requirements | New users       |
| **[Quick Start](doc/quickstart.md)**               | 2-minute setup guide              | New users       |
| **[Usage Guide](doc/usage.md)**                    | Common use cases & code samples   | All users       |
| **[Performance Optimization](doc/performance.md)** | Inference control & tuning        | Production apps |
| **[API Reference](doc/api.md)**                    | Complete technical reference      | Developers      |
| **[Troubleshooting](doc/troubleshooting.md)**      | Common issues & solutions         | All users       |
## 🤝 Community & Support
[](https://discord.com/invite/ultralytics) [](https://community.ultralytics.com/) [](https://www.reddit.com/r/ultralytics/)
- **💬 Questions?** [Discord](https://discord.com/invite/ultralytics) | [Forums](https://community.ultralytics.com/) | [GitHub Issues](https://github.com/ultralytics/yolo-flutter-app/issues)
- **🐛 Found a bug?** [Report it here](https://github.com/ultralytics/yolo-flutter-app/issues/new)
- **💡 Feature request?** [Let us know](https://github.com/ultralytics/yolo-flutter-app/discussions)
## 💡 Contribute
Ultralytics thrives on community collaboration, and we deeply value your contributions! Whether it's bug fixes, feature enhancements, or documentation improvements, your involvement is crucial. Please review our [Contributing Guide](https://docs.ultralytics.com/help/contributing/) for detailed insights on how to participate. We also encourage you to share your feedback through our [Survey](https://www.ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey). A heartfelt thank you 🙏 goes out to all our contributors!
[](https://github.com/ultralytics/ultralytics/graphs/contributors)
## 📄 License
Ultralytics offers two licensing options to accommodate diverse needs:
- **AGPL-3.0 License**: Ideal for students, researchers, and enthusiasts passionate about open-source collaboration. This [OSI-approved](https://opensource.org/license/agpl-v3) license promotes knowledge sharing and open contribution. See the [LICENSE](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) file for details.
- **Enterprise License**: Designed for commercial applications, this license permits seamless integration of Ultralytics software and AI models into commercial products and services, bypassing the open-source requirements of AGPL-3.0. For commercial use cases, please inquire about an [Enterprise License](https://www.ultralytics.com/license).
## 🔗 Related Resources
### Native iOS Development
If you're interested in using YOLO models directly in iOS applications with Swift (without Flutter), check out our dedicated iOS repository:
👉 **[Ultralytics YOLO iOS App](https://github.com/ultralytics/yolo-ios-app)** - A native iOS application demonstrating real-time object detection, segmentation, classification, and pose estimation using Ultralytics YOLO models.
This repository provides:
- Pure Swift implementation for iOS
- Direct Core ML integration
- Native iOS UI components
- Example code for various YOLO tasks
- Optimized for iOS performance
## 📮 Contact
Encountering issues or have feature requests related to Ultralytics YOLO? Please report them via [GitHub Issues](https://github.com/ultralytics/yolo-flutter-app/issues). For broader discussions, questions, and community support, join our [Discord](https://discord.com/invite/ultralytics) server!
<br>
<div align="center">
  <a href="https://github.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-github.png" width="3%" alt="Ultralytics GitHub"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.linkedin.com/company/ultralytics/"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-linkedin.png" width="3%" alt="Ultralytics LinkedIn"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://twitter.com/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-twitter.png" width="3%" alt="Ultralytics Twitter"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://youtube.com/ultralytics?sub_confirmation=1"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-youtube.png" width="3%" alt="Ultralytics YouTube"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://www.tiktok.com/@ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-tiktok.png" width="3%" alt="Ultralytics TikTok"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://ultralytics.com/bilibili"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-bilibili.png" width="3%" alt="Ultralytics BiliBili"></a>
  <img src="https://github.com/ultralytics/assets/raw/main/social/logo-transparent.png" width="3%" alt="space">
  <a href="https://discord.com/invite/ultralytics"><img src="https://github.com/ultralytics/assets/raw/main/social/logo-social-discord.png" width="3%" alt="Ultralytics Discord"></a>
</div>
Libraries
- config/channel_config
 - core/yolo_inference
 - core/yolo_model_manager
 - models/yolo_exceptions
 - models/yolo_result
 - models/yolo_task
 - platform/yolo_platform_impl
 - platform/yolo_platform_interface
 - ultralytics_yolo
 - utils/error_handler
 - utils/logger
 - utils/map_converter
 - widgets/yolo_controller
 - widgets/yolo_controls
 - widgets/yolo_overlay
 - yolo
 - yolo_instance_manager
 - yolo_performance_metrics
 - yolo_streaming_config
 - yolo_view