SphereGeometry constructor

SphereGeometry([
  1. double radius = 1,
  2. int widthSegments = 32,
  3. int heightSegments = 16,
  4. double phiStart = 0,
  5. double phiLength = math.pi * 2,
  6. double thetaStart = 0,
  7. double thetaLength = math.pi,
])

radius — sphere radius. Default is 1.

widthSegments — number of horizontal segments. Minimum value is 3, and the default is 32.

heightSegments — number of vertical segments. Minimum value is 2, and the default is 16.

phiStart — specify horizontal starting angle. Default is 0.

phiLength — specify horizontal sweep angle size. Default is Math.PI * 2.

thetaStart — specify vertical starting angle. Default is 0.

thetaLength — specify vertical sweep angle size. Default is Math.PI.

The geometry is created by sweeping and calculating vertexes around the Y axis (horizontal sweep) and the Z axis (vertical sweep). Thus, incomplete spheres (akin to 'sphere slices') can be created through the use of different values of phiStart, phiLength, thetaStart and thetaLength, in order to define the points in which we start (or end) calculating those vertices.

Implementation

SphereGeometry([
  double radius = 1,
  int widthSegments = 32,
  int heightSegments = 16,
  double phiStart = 0,
  double phiLength = math.pi * 2,
  double thetaStart = 0,
  double thetaLength = math.pi
]):super() {
  type = "SphereGeometry";
  parameters = {
    "radius": radius,
    "widthSegments": widthSegments,
    "heightSegments": heightSegments,
    "phiStart": phiStart,
    "phiLength": phiLength,
    "thetaStart": thetaStart,
    "thetaLength": thetaLength
  };

  widthSegments = math.max(3, widthSegments);
  heightSegments = math.max(2, heightSegments);

  final thetaEnd = math.min<double>(thetaStart + thetaLength, math.pi);

  int index = 0;
  final grid = [];

  final vertex = Vector3.zero();
  final normal = Vector3.zero();

  // buffers

  List<int> indices = [];
  List<double> vertices = [];
  List<double> normals = [];
  List<double> uvs = [];

  // generate vertices, normals and uvs

  for (int iy = 0; iy <= heightSegments; iy++) {
    final verticesRow = [];
    final v = iy / heightSegments;
    double uOffset = 0;

    if (iy == 0 && thetaStart == 0) {
      uOffset = 0.5 / widthSegments;
    } else if (iy == heightSegments && thetaEnd == math.pi) {
      uOffset = -0.5 / widthSegments;
    }

    for (int ix = 0; ix <= widthSegments; ix++) {
      final u = ix / widthSegments;

      vertex.x = -radius *
          math.cos(phiStart + u * phiLength) *
          math.sin(thetaStart + v * thetaLength);
      vertex.y = radius * math.cos(thetaStart + v * thetaLength);
      vertex.z = radius *
          math.sin(phiStart + u * phiLength) *
          math.sin(thetaStart + v * thetaLength);

      vertices.addAll([vertex.x.toDouble(), vertex.y.toDouble(), vertex.z.toDouble()]);

      normal.setFrom(vertex);
      normal.normalize();
      normals.addAll([normal.x.toDouble(), normal.y.toDouble(), normal.z.toDouble()]);
      uvs.addAll([u + uOffset, 1 - v]);
      verticesRow.add(index++);
    }

    grid.add(verticesRow);
  }

  // indices

  for (int iy = 0; iy < heightSegments; iy++) {
    for (int ix = 0; ix < widthSegments; ix++) {
      final a = grid[iy][ix + 1];
      final b = grid[iy][ix];
      final c = grid[iy + 1][ix];
      final d = grid[iy + 1][ix + 1];

      if (iy != 0 || thetaStart > 0) indices.addAll([a, b, d]);
      if (iy != heightSegments - 1 || thetaEnd < math.pi) {
        indices.addAll([b, c, d]);
      }
    }
  }

  // build geometry

  setIndex(indices);
  setAttributeFromString('position',Float32BufferAttribute.fromList(vertices, 3, false));
  setAttributeFromString('normal',Float32BufferAttribute.fromList(normals, 3, false));
  setAttributeFromString('uv', Float32BufferAttribute.fromList(uvs, 2, false));
}