hilbert3D static method
dynamic
hilbert3D(
- dynamic center,
- dynamic size,
- dynamic iterations,
- dynamic v0,
- dynamic v1,
- dynamic v2,
- dynamic v3,
- dynamic v4,
- dynamic v5,
- dynamic v6,
- dynamic v7,
Generates 3D-Coordinates in a very fast way.
Based on work by: @link http://www.openprocessing.org/visuals/?visualID=15599
@param center Center of Hilbert curve. @param size Total width of Hilbert curve. @param iterations Number of subdivisions. @param v0 Corner index -X, +Y, -Z. @param v1 Corner index -X, +Y, +Z. @param v2 Corner index -X, -Y, +Z. @param v3 Corner index -X, -Y, -Z. @param v4 Corner index +X, -Y, -Z. @param v5 Corner index +X, -Y, +Z. @param v6 Corner index +X, +Y, +Z. @param v7 Corner index +X, +Y, -Z.
Implementation
static hilbert3D(center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7) {
// Default Vars
center = center ?? Vector3(0, 0, 0);
size = size ?? 10;
var half = size / 2;
iterations = iterations ?? 1;
v0 = v0 ?? 0;
v1 = v1 ?? 1;
v2 = v2 ?? 2;
v3 = v3 ?? 3;
v4 = v4 ?? 4;
v5 = v5 ?? 5;
v6 = v6 ?? 6;
v7 = v7 ?? 7;
var vecS = [
Vector3(center.x - half, center.y + half, center.z - half),
Vector3(center.x - half, center.y + half, center.z + half),
Vector3(center.x - half, center.y - half, center.z + half),
Vector3(center.x - half, center.y - half, center.z - half),
Vector3(center.x + half, center.y - half, center.z - half),
Vector3(center.x + half, center.y - half, center.z + half),
Vector3(center.x + half, center.y + half, center.z + half),
Vector3(center.x + half, center.y + half, center.z - half)
];
var vec = [vecS[v0], vecS[v1], vecS[v2], vecS[v3], vecS[v4], vecS[v5], vecS[v6], vecS[v7]];
// Recurse iterations
if (--iterations >= 0) {
var tmp = [];
tmp.addAll(GeometryUtils.hilbert3D(vec[0], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1));
tmp.addAll(GeometryUtils.hilbert3D(vec[1], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3));
tmp.addAll(GeometryUtils.hilbert3D(vec[2], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3));
tmp.addAll(GeometryUtils.hilbert3D(vec[3], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5));
tmp.addAll(GeometryUtils.hilbert3D(vec[4], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5));
tmp.addAll(GeometryUtils.hilbert3D(vec[5], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7));
tmp.addAll(GeometryUtils.hilbert3D(vec[6], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7));
tmp.addAll(GeometryUtils.hilbert3D(vec[7], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7));
// Return recursive call
return tmp;
}
// Return complete Hilbert Curve.
return vec;
}