createShapes static method
dynamic
createShapes(
- dynamic shapePath
Implementation
static createShapes(shapePath) {
// Param shapePath: a shapepath as returned by the parse function of this class
// Returns Shape object
const bugNumber = 99999999999999.0;
var intersectionLocationType = {
"ORIGIN": 0,
"DESTINATION": 1,
"BETWEEN": 2,
"LEFT": 3,
"RIGHT": 4,
"BEHIND": 5,
"BEYOND": 6
};
Map<String, dynamic> classifyResult = {"loc": intersectionLocationType["ORIGIN"], "t": 0};
classifyPoint(p, edgeStart, edgeEnd) {
var ax = edgeEnd.x - edgeStart.x;
var ay = edgeEnd.y - edgeStart.y;
var bx = p.x - edgeStart.x;
var by = p.y - edgeStart.y;
var sa = ax * by - bx * ay;
if ((p.x == edgeStart.x) && (p.y == edgeStart.y)) {
classifyResult["loc"] = intersectionLocationType["ORIGIN"];
classifyResult["t"] = 0;
return;
}
if ((p.x == edgeEnd.x) && (p.y == edgeEnd.y)) {
classifyResult["loc"] = intersectionLocationType["DESTINATION"];
classifyResult["t"] = 1;
return;
}
if (sa < -Math.epsilon) {
classifyResult["loc"] = intersectionLocationType["LEFT"];
return;
}
if (sa > Math.epsilon) {
classifyResult["loc"] = intersectionLocationType["RIGHT"];
return;
}
if (((ax * bx) < 0) || ((ay * by) < 0)) {
classifyResult["loc"] = intersectionLocationType["BEHIND"];
return;
}
if ((Math.sqrt(ax * ax + ay * ay)) < (Math.sqrt(bx * bx + by * by))) {
classifyResult["loc"] = intersectionLocationType["BEYOND"];
return;
}
var t;
if (ax != 0) {
t = bx / ax;
} else {
t = by / ay;
}
classifyResult["loc"] = intersectionLocationType["BETWEEN"];
classifyResult["t"] = t;
}
findEdgeIntersection(a0, a1, b0, b1) {
var x1 = a0.x;
var x2 = a1.x;
var x3 = b0.x;
var x4 = b1.x;
var y1 = a0.y;
var y2 = a1.y;
var y3 = b0.y;
var y4 = b1.y;
var nom1 = (x4 - x3) * (y1 - y3) - (y4 - y3) * (x1 - x3);
var nom2 = (x2 - x1) * (y1 - y3) - (y2 - y1) * (x1 - x3);
var denom = (y4 - y3) * (x2 - x1) - (x4 - x3) * (y2 - y1);
var t1 = nom1 / denom;
var t2 = nom2 / denom;
if (((denom == 0) && (nom1 != 0)) || (t1 <= 0) || (t1 >= 1) || (t2 < 0) || (t2 > 1)) {
//1. lines are parallel or edges don't intersect
return null;
} else if ((nom1 == 0) && (denom == 0)) {
//2. lines are colinear
//check if endpoints of edge2 (b0-b1) lies on edge1 (a0-a1)
for (var i = 0; i < 2; i++) {
classifyPoint(i == 0 ? b0 : b1, a0, a1);
//find position of this endpoints relatively to edge1
if (classifyResult["loc"] == intersectionLocationType["ORIGIN"]) {
var point = (i == 0 ? b0 : b1);
return {"x": point.x, "y": point.y, "t": classifyResult["t"]};
} else if (classifyResult["loc"] == intersectionLocationType["BETWEEN"]) {
var x = num.parse((x1 + classifyResult["t"]! * (x2 - x1)).toStringAsPrecision(10));
var y = num.parse((y1 + classifyResult["t"]! * (y2 - y1)).toStringAsPrecision(10));
return {"x": x, "y": y, "t": classifyResult["t"]};
}
}
return null;
} else {
//3. edges intersect
for (var i = 0; i < 2; i++) {
classifyPoint(i == 0 ? b0 : b1, a0, a1);
if (classifyResult["loc"] == intersectionLocationType["ORIGIN"]) {
var point = (i == 0 ? b0 : b1);
return {"x": point.x, "y": point.y, "t": classifyResult["t"]};
}
}
var x = num.parse((x1 + t1 * (x2 - x1)).toStringAsPrecision(10));
var y = num.parse((y1 + t1 * (y2 - y1)).toStringAsPrecision(10));
return {"x": x, "y": y, "t": t1};
}
}
getIntersections(path1, path2) {
var intersectionsRaw = [];
var intersections = [];
for (var index = 1; index < path1.length; index++) {
var path1EdgeStart = path1[index - 1];
var path1EdgeEnd = path1[index];
for (var index2 = 1; index2 < path2.length; index2++) {
var path2EdgeStart = path2[index2 - 1];
var path2EdgeEnd = path2[index2];
var intersection = findEdgeIntersection(path1EdgeStart, path1EdgeEnd, path2EdgeStart, path2EdgeEnd);
if (intersection != null &&
intersectionsRaw.indexWhere(
(i) => i["t"] <= intersection["t"] + Math.epsilon && i["t"] >= intersection["t"] - Math.epsilon) <
0) {
intersectionsRaw.add(intersection);
intersections.add(Vector2(intersection["x"], intersection["y"]));
}
}
}
return intersections;
}
getScanlineIntersections(scanline, boundingBox, paths) {
var center = Vector2();
boundingBox.getCenter(center);
var allIntersections = [];
paths.forEach((path) {
// check if the center of the bounding box is in the bounding box of the paths.
// this is a pruning method to limit the search of intersections in paths that can't envelop of the current path.
// if a path envelops another path. The center of that oter path, has to be inside the bounding box of the enveloping path.
if (path["boundingBox"].containsPoint(center)) {
var intersections = getIntersections(scanline, path["points"]);
for (var p in intersections) {
allIntersections.add({"identifier": path["identifier"], "isCW": path["isCW"], "point": p});
}
}
});
allIntersections.sort((i1, i2) {
return i1["point"].x >= i2["point"].x ? 1 : -1;
});
return allIntersections;
}
isHoleTo(simplePath, allPaths, scanlineMinX, scanlineMaxX, fillRule) {
if (fillRule == null || fillRule == '') {
fillRule = 'nonzero';
}
var centerBoundingBox = Vector2();
simplePath["boundingBox"].getCenter(centerBoundingBox);
var scanline = [Vector2(scanlineMinX, centerBoundingBox.y), Vector2(scanlineMaxX, centerBoundingBox.y)];
var scanlineIntersections = getScanlineIntersections(scanline, simplePath["boundingBox"], allPaths);
scanlineIntersections.sort((i1, i2) {
return i1["point"].x >= i2["point"].x ? 1 : -1;
});
var baseIntersections = [];
var otherIntersections = [];
for (var i in scanlineIntersections) {
if (i["identifier"] == simplePath["identifier"]) {
baseIntersections.add(i);
} else {
otherIntersections.add(i);
}
}
var firstXOfPath = baseIntersections[0]["point"].x;
// build up the path hierarchy
var stack = [];
var i = 0;
while (i < otherIntersections.length && otherIntersections[i]["point"].x < firstXOfPath) {
if (stack.isNotEmpty && stack[stack.length - 1] == otherIntersections[i]["identifier"]) {
stack.removeLast();
} else {
stack.add(otherIntersections[i]["identifier"]);
}
i++;
}
stack.add(simplePath["identifier"]);
if (fillRule == 'evenodd') {
var isHole = stack.length % 2 == 0 ? true : false;
var isHoleFor = stack[stack.length - 2];
return {"identifier": simplePath["identifier"], "isHole": isHole, "for": isHoleFor};
} else if (fillRule == 'nonzero') {
// check if path is a hole by counting the amount of paths with alternating rotations it has to cross.
var isHole = true;
var isHoleFor;
var lastCWValue;
for (var i = 0; i < stack.length; i++) {
var identifier = stack[i];
if (isHole) {
lastCWValue = allPaths[identifier]["isCW"];
isHole = false;
isHoleFor = identifier;
} else if (lastCWValue != allPaths[identifier]["isCW"]) {
lastCWValue = allPaths[identifier]["isCW"];
isHole = true;
}
}
return {"identifier": simplePath["identifier"], "isHole": isHole, "for": isHoleFor};
} else {
print('fill-rule: $fillRule is currently not implemented.');
}
}
// check for self intersecting paths
// TODO
// check intersecting paths
// TODO
// prepare paths for hole detection
var identifier = 0;
num scanlineMinX = bugNumber;
num scanlineMaxX = -bugNumber;
List simplePaths = shapePath.subPaths.map((p) {
var points = p.getPoints();
double maxY = -bugNumber;
double minY = bugNumber;
double maxX = -bugNumber;
double minX = bugNumber;
//points.forEach(p => p.y *= -1);
for (var i = 0; i < points.length; i++) {
var p = points[i];
if (p.y > maxY) {
maxY = p.y;
}
if (p.y < minY) {
minY = p.y;
}
if (p.x > maxX) {
maxX = p.x;
}
if (p.x < minX) {
minX = p.x;
}
}
//
if (scanlineMaxX <= maxX) {
scanlineMaxX = maxX + 1;
}
if (scanlineMinX >= minX) {
scanlineMinX = minX - 1;
}
return {
"curves": p.curves,
"points": points,
"isCW": ShapeUtils.isClockWise(points),
"identifier": identifier++,
"boundingBox": Box2(Vector2(minX, minY), Vector2(maxX, maxY))
};
}).toList();
simplePaths = simplePaths.where((sp) {
return sp["points"].length > 1;
}).toList();
// check if path is solid or a hole
var isAHole = simplePaths
.map((p) => isHoleTo(p, simplePaths, scanlineMinX, scanlineMaxX, shapePath.userData["style"]["fillRule"]))
.toList();
var shapesToReturn = [];
for (var p in simplePaths) {
var amIAHole = isAHole[p["identifier"]]!;
if (!amIAHole["isHole"]) {
var shape = Shape(null);
shape.curves = p["curves"];
var holes = isAHole.where((h) => h!["isHole"] && h["for"] == p["identifier"]).toList();
for (var h in holes) {
var hole = simplePaths[h!["identifier"]];
var path = Path(null);
path.curves = hole["curves"];
shape.holes.add(path);
}
shapesToReturn.add(shape);
}
}
return shapesToReturn;
}