messageDefinition property

  1. @override
String get messageDefinition

Implementation

@override
String get messageDefinition {
  // Returns full string definition for message
  return '''# Navigation Satellite fix for any Global Navigation Satellite System
#
# Specified using the WGS 84 reference ellipsoid

# header.stamp specifies the ROS time for this measurement (the
#        corresponding satellite time may be reported using the
#        sensor_msgs/TimeReference message).
#
# header.frame_id is the frame of reference reported by the satellite
#        receiver, usually the location of the antenna.  This is a
#        Euclidean frame relative to the vehicle, not a reference
#        ellipsoid.
Header header

# satellite fix status information
NavSatStatus status

# Latitude [degrees]. Positive is north of equator; negative is south.
float64 latitude

# Longitude [degrees]. Positive is east of prime meridian; negative is west.
float64 longitude

# Altitude [m]. Positive is above the WGS 84 ellipsoid
# (quiet NaN if no altitude is available).
float64 altitude

# Position covariance [m^2] defined relative to a tangential plane
# through the reported position. The components are East, North, and
# Up (ENU), in row-major order.
#
# Beware: this coordinate system exhibits singularities at the poles.

float64[9] position_covariance

# If the covariance of the fix is known, fill it in completely. If the
# GPS receiver provides the variance of each measurement, put them
# along the diagonal. If only Dilution of Precision is available,
# estimate an approximate covariance from that.

uint8 COVARIANCE_TYPE_UNKNOWN = 0
uint8 COVARIANCE_TYPE_APPROXIMATED = 1
uint8 COVARIANCE_TYPE_DIAGONAL_KNOWN = 2
uint8 COVARIANCE_TYPE_KNOWN = 3

uint8 position_covariance_type

================================================================================
MSG: std_msgs/Header
# Standard metadata for higher-level stamped data types.
# This is generally used to communicate timestamped data
# in a particular coordinate frame.
#
# sequence ID: consecutively increasing ID
uint32 seq
#Two-integer timestamp that is expressed as:
# * stamp.sec: seconds (stamp_secs) since epoch (in Python the variable is called 'secs')
# * stamp.nsec: nanoseconds since stamp_secs (in Python the variable is called 'nsecs')
# time-handling sugar is provided by the client library
time stamp
#Frame this data is associated with
string frame_id

================================================================================
MSG: sensor_msgs/NavSatStatus
# Navigation Satellite fix status for any Global Navigation Satellite System

# Whether to output an augmented fix is determined by both the fix
# type and the last time differential corrections were received.  A
# fix is valid when status >= STATUS_FIX.

int8 STATUS_NO_FIX =  -1        # unable to fix position
int8 STATUS_FIX =      0        # unaugmented fix
int8 STATUS_SBAS_FIX = 1        # with satellite-based augmentation
int8 STATUS_GBAS_FIX = 2        # with ground-based augmentation

int8 status

# Bits defining which Global Navigation Satellite System signals were
# used by the receiver.

uint16 SERVICE_GPS =     1
uint16 SERVICE_GLONASS = 2
uint16 SERVICE_COMPASS = 4      # includes BeiDou.
uint16 SERVICE_GALILEO = 8

uint16 service

''';
}