loadObjectDetectionModel static method
Future<ModelObjectDetection>
loadObjectDetectionModel(
- String path,
- int numberOfClasses,
- int imageWidth,
- int imageHeight, {
- String? labelPath,
- ObjectDetectionModelType objectDetectionModelType = ObjectDetectionModelType.yolov5,
- ModelLocation modelLocation = ModelLocation.asset,
- LabelsLocation labelsLocation = LabelsLocation.asset,
Sets pytorch object detection model (path and lables) and returns Model
Implementation
static Future<ModelObjectDetection> loadObjectDetectionModel(
String path, int numberOfClasses, int imageWidth, int imageHeight,
{String? labelPath,
ObjectDetectionModelType objectDetectionModelType =
ObjectDetectionModelType.yolov5,
ModelLocation modelLocation = ModelLocation.asset,
LabelsLocation labelsLocation = LabelsLocation.asset}) async {
if (modelLocation == ModelLocation.asset) {
path = await _getAbsolutePath(path);
}
int index = await ModelApi().loadModel(path, numberOfClasses, imageWidth,
imageHeight, objectDetectionModelType.index);
List<String> labels = [];
if (labelPath != null) {
String labelData =
await _loadLabelsFile(labelPath, labelsLocation: labelsLocation);
if (labelPath.endsWith(".txt")) {
labels = await _getLabelsTxt(labelData);
} else {
labels = await _getLabelsCsv(labelData);
}
}
return ModelObjectDetection(index, imageWidth, imageHeight, labels,
modelType: objectDetectionModelType);
}