TorusKnotGeometry constructor
TorusKnotGeometry([
- dynamic radius = 1,
- dynamic tube = 0.4,
- dynamic tubularSegments = 64,
- dynamic radialSegments = 8,
- dynamic p = 2,
- dynamic q = 3,
Implementation
TorusKnotGeometry(
[radius = 1,
tube = 0.4,
tubularSegments = 64,
radialSegments = 8,
p = 2,
q = 3])
: super() {
parameters = {
"radius": radius,
"tube": tube,
"tubularSegments": tubularSegments,
"radialSegments": radialSegments,
"p": p,
"q": q
};
tubularSegments = Math.floor(tubularSegments);
radialSegments = Math.floor(radialSegments);
// buffers
List<num> indices = [];
List<double> vertices = [];
List<double> normals = [];
List<double> uvs = [];
// helper variables
var vertex = Vector3();
var normal = Vector3();
var P1 = Vector3();
var P2 = Vector3();
var B = Vector3();
var T = Vector3();
var N = Vector3();
calculatePositionOnCurve(u, p, q, radius, position) {
var cu = Math.cos(u);
var su = Math.sin(u);
var quOverP = q / p * u;
var cs = Math.cos(quOverP);
position.x = radius * (2 + cs) * 0.5 * cu;
position.y = radius * (2 + cs) * su * 0.5;
position.z = radius * Math.sin(quOverP) * 0.5;
}
// generate vertices, normals and uvs
for (var i = 0; i <= tubularSegments; ++i) {
// the radian "u" is used to calculate the position on the torus curve of the current tubular segement
var u = i / tubularSegments * p * Math.PI * 2;
// now we calculate two points. P1 is our current position on the curve, P2 is a little farther ahead.
// these points are used to create a special "coordinate space", which is necessary to calculate the correct vertex positions
calculatePositionOnCurve(u, p, q, radius, P1);
calculatePositionOnCurve(u + 0.01, p, q, radius, P2);
// calculate orthonormal basis
T.subVectors(P2, P1);
N.addVectors(P2, P1);
B.crossVectors(T, N);
N.crossVectors(B, T);
// normalize B, N. T can be ignored, we don't use it
B.normalize();
N.normalize();
for (var j = 0; j <= radialSegments; ++j) {
// now calculate the vertices. they are nothing more than an extrusion of the torus curve.
// because we extrude a shape in the xy-plane, there is no need to calculate a z-value.
var v = j / radialSegments * Math.PI * 2;
var cx = -tube * Math.cos(v);
var cy = tube * Math.sin(v);
// now calculate the final vertex position.
// first we orient the extrusion with our basis vectos, then we add it to the current position on the curve
vertex.x = P1.x + (cx * N.x + cy * B.x);
vertex.y = P1.y + (cx * N.y + cy * B.y);
vertex.z = P1.z + (cx * N.z + cy * B.z);
vertices.addAll(
[vertex.x.toDouble(), vertex.y.toDouble(), vertex.z.toDouble()]);
// normal (P1 is always the center/origin of the extrusion, thus we can use it to calculate the normal)
normal.subVectors(vertex, P1).normalize();
normals.addAll(
[normal.x.toDouble(), normal.y.toDouble(), normal.z.toDouble()]);
// uv
uvs.add(i / tubularSegments);
uvs.add(j / radialSegments);
}
}
// generate indices
for (var j = 1; j <= tubularSegments; j++) {
for (var i = 1; i <= radialSegments; i++) {
// indices
var a = (radialSegments + 1) * (j - 1) + (i - 1);
var b = (radialSegments + 1) * j + (i - 1);
var c = (radialSegments + 1) * j + i;
var d = (radialSegments + 1) * (j - 1) + i;
// faces
indices.addAll([a, b, d]);
indices.addAll([b, c, d]);
}
}
// build geometry
setIndex(indices);
setAttribute('position',
Float32BufferAttribute(Float32Array.from(vertices), 3, false));
setAttribute('normal',
Float32BufferAttribute(Float32Array.from(normals), 3, false));
setAttribute(
'uv', Float32BufferAttribute(Float32Array.from(uvs), 2, false));
// this function calculates the current position on the torus curve
}