hilbert3D static method
dynamic
hilbert3D(
- dynamic center,
- dynamic size,
- dynamic iterations,
- dynamic v0,
- dynamic v1,
- dynamic v2,
- dynamic v3,
- dynamic v4,
- dynamic v5,
- dynamic v6,
- dynamic v7,
- Generates 3D-Coordinates in a very fast way.
*
- Based on work by:
- @link http://www.openprocessing.org/visuals/?visualID=15599
- @param center Center of Hilbert curve.
- @param size Total width of Hilbert curve.
- @param iterations Number of subdivisions.
- @param v0 Corner index -X, +Y, -Z.
- @param v1 Corner index -X, +Y, +Z.
- @param v2 Corner index -X, -Y, +Z.
- @param v3 Corner index -X, -Y, -Z.
- @param v4 Corner index +X, -Y, -Z.
- @param v5 Corner index +X, -Y, +Z.
- @param v6 Corner index +X, +Y, +Z.
- @param v7 Corner index +X, +Y, -Z.
- Based on work by:
Implementation
static hilbert3D(center, size, iterations, v0, v1, v2, v3, v4, v5, v6, v7) {
// Default Vars
center = center != null ? center : new Vector3(0, 0, 0);
size = size != null ? size : 10;
var half = size / 2;
iterations = iterations != null ? iterations : 1;
v0 = v0 != null ? v0 : 0;
v1 = v1 != null ? v1 : 1;
v2 = v2 != null ? v2 : 2;
v3 = v3 != null ? v3 : 3;
v4 = v4 != null ? v4 : 4;
v5 = v5 != null ? v5 : 5;
v6 = v6 != null ? v6 : 6;
v7 = v7 != null ? v7 : 7;
var vec_s = [
new Vector3(center.x - half, center.y + half, center.z - half),
new Vector3(center.x - half, center.y + half, center.z + half),
new Vector3(center.x - half, center.y - half, center.z + half),
new Vector3(center.x - half, center.y - half, center.z - half),
new Vector3(center.x + half, center.y - half, center.z - half),
new Vector3(center.x + half, center.y - half, center.z + half),
new Vector3(center.x + half, center.y + half, center.z + half),
new Vector3(center.x + half, center.y + half, center.z - half)
];
var vec = [
vec_s[v0],
vec_s[v1],
vec_s[v2],
vec_s[v3],
vec_s[v4],
vec_s[v5],
vec_s[v6],
vec_s[v7]
];
// Recurse iterations
if (--iterations >= 0) {
var tmp = [];
tmp.addAll(GeometryUtils.hilbert3D(
vec[0], half, iterations, v0, v3, v4, v7, v6, v5, v2, v1));
tmp.addAll(GeometryUtils.hilbert3D(
vec[1], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3));
tmp.addAll(GeometryUtils.hilbert3D(
vec[2], half, iterations, v0, v7, v6, v1, v2, v5, v4, v3));
tmp.addAll(GeometryUtils.hilbert3D(
vec[3], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5));
tmp.addAll(GeometryUtils.hilbert3D(
vec[4], half, iterations, v2, v3, v0, v1, v6, v7, v4, v5));
tmp.addAll(GeometryUtils.hilbert3D(
vec[5], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7));
tmp.addAll(GeometryUtils.hilbert3D(
vec[6], half, iterations, v4, v3, v2, v5, v6, v1, v0, v7));
tmp.addAll(GeometryUtils.hilbert3D(
vec[7], half, iterations, v6, v5, v2, v1, v0, v3, v4, v7));
// Return recursive call
return tmp;
}
// Return complete Hilbert Curve.
return vec;
}