llama_cpp class

llama.cpp binding

Constructors

llama_cpp(DynamicLibrary dynamicLibrary)
The symbols are looked up in dynamicLibrary.
llama_cpp.fromLookup(Pointer<T> lookup<T extends NativeType>(String symbolName))
The symbols are looked up with lookup.

Properties

GGML_TENSOR_SIZE int
no setter
hashCode int
The hash code for this object.
no setterinherited
runtimeType Type
A representation of the runtime type of the object.
no setterinherited
sys_errlist Pointer<Pointer<Char>>
getter/setter pair
sys_nerr int
no setter

Methods

asprintf(Pointer<Pointer<Char>> arg0, Pointer<Char> arg1) int
clearerr(Pointer<FILE> arg0) → void
ctermid(Pointer<Char> arg0) Pointer<Char>
ctermid_r(Pointer<Char> arg0) Pointer<Char>
dprintf(int arg0, Pointer<Char> arg1) int
fclose(Pointer<FILE> arg0) int
fdopen(int arg0, Pointer<Char> arg1) Pointer<FILE>
feof(Pointer<FILE> arg0) int
ferror(Pointer<FILE> arg0) int
fflush(Pointer<FILE> arg0) int
fgetc(Pointer<FILE> arg0) int
fgetln(Pointer<FILE> arg0, Pointer<Size> arg1) Pointer<Char>
fgetpos(Pointer<FILE> arg0, Pointer<fpos_t> arg1) int
fgets(Pointer<Char> arg0, int arg1, Pointer<FILE> arg2) Pointer<Char>
fileno(Pointer<FILE> arg0) int
flockfile(Pointer<FILE> arg0) → void
fmemopen(Pointer<Void> __buf, int __size, Pointer<Char> __mode) Pointer<FILE>
fmtcheck(Pointer<Char> arg0, Pointer<Char> arg1) Pointer<Char>
fopen(Pointer<Char> __filename, Pointer<Char> __mode) Pointer<FILE>
fprintf(Pointer<FILE> arg0, Pointer<Char> arg1) int
fpurge(Pointer<FILE> arg0) int
fputc(int arg0, Pointer<FILE> arg1) int
fputs(Pointer<Char> arg0, Pointer<FILE> arg1) int
fread(Pointer<Void> __ptr, int __size, int __nitems, Pointer<FILE> __stream) int
freopen(Pointer<Char> arg0, Pointer<Char> arg1, Pointer<FILE> arg2) Pointer<FILE>
fscanf(Pointer<FILE> arg0, Pointer<Char> arg1) int
fseek(Pointer<FILE> arg0, int arg1, int arg2) int
fseeko(Pointer<FILE> __stream, int __offset, int __whence) int
fsetpos(Pointer<FILE> arg0, Pointer<fpos_t> arg1) int
ftell(Pointer<FILE> arg0) int
ftello(Pointer<FILE> __stream) int
ftrylockfile(Pointer<FILE> arg0) int
funlockfile(Pointer<FILE> arg0) → void
funopen(Pointer<Void> arg0, Pointer<NativeFunction<Int Function(Pointer<Void>, Pointer<Char>, Int)>> arg1, Pointer<NativeFunction<Int Function(Pointer<Void>, Pointer<Char>, Int)>> arg2, Pointer<NativeFunction<fpos_t Function(Pointer<Void>, fpos_t, Int)>> arg3, Pointer<NativeFunction<Int Function(Pointer<Void>)>> arg4) Pointer<FILE>
fwrite(Pointer<Void> __ptr, int __size, int __nitems, Pointer<FILE> __stream) int
getc(Pointer<FILE> arg0) int
getc_unlocked(Pointer<FILE> arg0) int
getchar() int
getchar_unlocked() int
getdelim(Pointer<Pointer<Char>> __linep, Pointer<Size> __linecapp, int __delimiter, Pointer<FILE> __stream) int
getline(Pointer<Pointer<Char>> __linep, Pointer<Size> __linecapp, Pointer<FILE> __stream) int
gets(Pointer<Char> arg0) Pointer<Char>
getw(Pointer<FILE> arg0) int
ggml_abort(Pointer<Char> file, int line, Pointer<Char> fmt) → void
ggml_abs(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_abs_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_acc(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int nb2, int nb3, int offset) Pointer<ggml_tensor>
ggml_acc_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int nb2, int nb3, int offset) Pointer<ggml_tensor>
ggml_add(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_add1(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_add1_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_add_cast(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_type type) Pointer<ggml_tensor>
ggml_add_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_add_rel_pos(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> pw, Pointer<ggml_tensor> ph) Pointer<ggml_tensor>
ggml_add_rel_pos_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> pw, Pointer<ggml_tensor> ph) Pointer<ggml_tensor>
ggml_arange(Pointer<ggml_context> ctx, double start, double stop, double step) Pointer<ggml_tensor>
ggml_are_same_shape(Pointer<ggml_tensor> t0, Pointer<ggml_tensor> t1) bool
ggml_are_same_stride(Pointer<ggml_tensor> t0, Pointer<ggml_tensor> t1) bool
ggml_argmax(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_argsort(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_sort_order order) Pointer<ggml_tensor>
ggml_backend_alloc_buffer(ggml_backend_t backend, int size) ggml_backend_buffer_t
ggml_backend_alloc_ctx_tensors(Pointer<ggml_context> ctx, ggml_backend_t backend) Pointer<ggml_backend_buffer>
ggml_backend_alloc_ctx_tensors_from_buft(Pointer<ggml_context> ctx, ggml_backend_buffer_type_t buft) Pointer<ggml_backend_buffer>
ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, int value) → void
ggml_backend_buffer_free(ggml_backend_buffer_t buffer) → void
ggml_backend_buffer_get_alignment(ggml_backend_buffer_t buffer) int
ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, Pointer<ggml_tensor> tensor) int
ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) Pointer<Void>
ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) int
ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) int
ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) ggml_backend_buffer_type_t
ggml_backend_buffer_get_usage(ggml_backend_buffer_t buffer) ggml_backend_buffer_usage
ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, Pointer<ggml_tensor> tensor) → void
ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) bool
ggml_backend_buffer_name(ggml_backend_buffer_t buffer) Pointer<Char>
ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) → void
ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, ggml_backend_buffer_usage usage) → void
ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, int size) ggml_backend_buffer_t
ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) int
ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, Pointer<ggml_tensor> tensor) int
ggml_backend_buft_get_device(ggml_backend_buffer_type_t buft) ggml_backend_dev_t
ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) int
ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) bool
ggml_backend_buft_name(ggml_backend_buffer_type_t buft) Pointer<Char>
ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, Pointer<ggml_cgraph> graph, ggml_backend_eval_callback callback, Pointer<Void> user_data) bool
ggml_backend_cpu_aarch64_buffer_type() ggml_backend_buffer_type_t
ggml_backend_cpu_buffer_from_ptr(Pointer<Void> ptr, int size) ggml_backend_buffer_t
ggml_backend_cpu_buffer_type() ggml_backend_buffer_type_t
ggml_backend_cpu_buft_is_aarch64(ggml_backend_buffer_type_t buft) bool
ggml_backend_cpu_init() ggml_backend_t
ggml_backend_cpu_reg() ggml_backend_reg_t
ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, Pointer<Void> abort_callback_data) → void
ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) → void
ggml_backend_cpu_set_threadpool(ggml_backend_t backend_cpu, ggml_threadpool_t threadpool) → void
ggml_backend_dev_backend_reg(ggml_backend_dev_t device) ggml_backend_reg_t
ggml_backend_dev_buffer_from_host_ptr(ggml_backend_dev_t device, Pointer<Void> ptr, int size, int max_tensor_size) ggml_backend_buffer_t
ggml_backend_dev_buffer_type(ggml_backend_dev_t device) ggml_backend_buffer_type_t
ggml_backend_dev_by_name(Pointer<Char> name) ggml_backend_dev_t
ggml_backend_dev_by_type(ggml_backend_dev_type type) ggml_backend_dev_t
ggml_backend_dev_count() int
ggml_backend_dev_description(ggml_backend_dev_t device) Pointer<Char>
ggml_backend_dev_get(int index) ggml_backend_dev_t
ggml_backend_dev_get_props(ggml_backend_dev_t device, Pointer<ggml_backend_dev_props> props) → void
ggml_backend_dev_host_buffer_type(ggml_backend_dev_t device) ggml_backend_buffer_type_t
ggml_backend_dev_init(ggml_backend_dev_t device, Pointer<Char> params) ggml_backend_t
ggml_backend_dev_memory(ggml_backend_dev_t device, Pointer<Size> free, Pointer<Size> total) → void
ggml_backend_dev_name(ggml_backend_dev_t device) Pointer<Char>
ggml_backend_dev_offload_op(ggml_backend_dev_t device, Pointer<ggml_tensor> op) bool
ggml_backend_dev_supports_buft(ggml_backend_dev_t device, ggml_backend_buffer_type_t buft) bool
ggml_backend_dev_supports_op(ggml_backend_dev_t device, Pointer<ggml_tensor> op) bool
ggml_backend_dev_type1(ggml_backend_dev_t device) ggml_backend_dev_type
ggml_backend_event_free(ggml_backend_event_t event) → void
ggml_backend_event_new(ggml_backend_dev_t device) ggml_backend_event_t
ggml_backend_event_record(ggml_backend_event_t event, ggml_backend_t backend) → void
ggml_backend_event_synchronize(ggml_backend_event_t event) → void
ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) → void
ggml_backend_free(ggml_backend_t backend) → void
ggml_backend_get_alignment(ggml_backend_t backend) int
ggml_backend_get_default_buffer_type(ggml_backend_t backend) ggml_backend_buffer_type_t
ggml_backend_get_device(ggml_backend_t backend) ggml_backend_dev_t
ggml_backend_get_max_size(ggml_backend_t backend) int
ggml_backend_graph_compute(ggml_backend_t backend, Pointer<ggml_cgraph> cgraph) ggml_status
ggml_backend_graph_compute_async(ggml_backend_t backend, Pointer<ggml_cgraph> cgraph) ggml_status
ggml_backend_graph_copy1(ggml_backend_t backend, Pointer<ggml_cgraph> graph) ggml_backend_graph_copy
ggml_backend_graph_copy_free(ggml_backend_graph_copy copy) → void
ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) ggml_status
ggml_backend_graph_plan_create(ggml_backend_t backend, Pointer<ggml_cgraph> cgraph) ggml_backend_graph_plan_t
ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) → void
ggml_backend_guid(ggml_backend_t backend) ggml_guid_t
ggml_backend_init_best() ggml_backend_t
ggml_backend_init_by_name(Pointer<Char> name, Pointer<Char> params) ggml_backend_t
ggml_backend_init_by_type(ggml_backend_dev_type type, Pointer<Char> params) ggml_backend_t
ggml_backend_is_cpu(ggml_backend_t backend) bool
ggml_backend_name(ggml_backend_t backend) Pointer<Char>
ggml_backend_offload_op(ggml_backend_t backend, Pointer<ggml_tensor> op) bool
ggml_backend_reg_by_name(Pointer<Char> name) ggml_backend_reg_t
ggml_backend_reg_count() int
ggml_backend_reg_dev_count(ggml_backend_reg_t reg) int
ggml_backend_reg_dev_get(ggml_backend_reg_t reg, int index) ggml_backend_dev_t
ggml_backend_reg_get(int index) ggml_backend_reg_t
ggml_backend_reg_get_proc_address(ggml_backend_reg_t reg, Pointer<Char> name) Pointer<Void>
ggml_backend_reg_name(ggml_backend_reg_t reg) Pointer<Char>
ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, Pointer<ggml_cgraph> graph) bool
ggml_backend_sched_free(ggml_backend_sched_t sched) → void
ggml_backend_sched_get_backend(ggml_backend_sched_t sched, int i) ggml_backend_t
ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) int
ggml_backend_sched_get_n_backends(ggml_backend_sched_t sched) int
ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) int
ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) int
ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, Pointer<ggml_tensor> node) ggml_backend_t
ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, Pointer<ggml_cgraph> graph) ggml_status
ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, Pointer<ggml_cgraph> graph) ggml_status
ggml_backend_sched_new(Pointer<ggml_backend_t> backends, Pointer<ggml_backend_buffer_type_t> bufts, int n_backends, int graph_size, bool parallel) ggml_backend_sched_t
ggml_backend_sched_reserve(ggml_backend_sched_t sched, Pointer<ggml_cgraph> measure_graph) bool
ggml_backend_sched_reset(ggml_backend_sched_t sched) → void
ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, Pointer<Void> user_data) → void
ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, Pointer<ggml_tensor> node, ggml_backend_t backend) → void
ggml_backend_sched_synchronize(ggml_backend_sched_t sched) → void
ggml_backend_supports_buft(ggml_backend_t backend, ggml_backend_buffer_type_t buft) bool
ggml_backend_supports_op(ggml_backend_t backend, Pointer<ggml_tensor> op) bool
ggml_backend_synchronize(ggml_backend_t backend) → void
ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, Pointer<ggml_tensor> tensor, Pointer<Void> addr) → void
ggml_backend_tensor_copy(Pointer<ggml_tensor> src, Pointer<ggml_tensor> dst) → void
ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, Pointer<ggml_tensor> src, Pointer<ggml_tensor> dst) → void
ggml_backend_tensor_get(Pointer<ggml_tensor> tensor, Pointer<Void> data, int offset, int size) → void
ggml_backend_tensor_get_async(ggml_backend_t backend, Pointer<ggml_tensor> tensor, Pointer<Void> data, int offset, int size) → void
ggml_backend_tensor_memset(Pointer<ggml_tensor> tensor, int value, int offset, int size) → void
ggml_backend_tensor_set(Pointer<ggml_tensor> tensor, Pointer<Void> data, int offset, int size) → void
ggml_backend_tensor_set_async(ggml_backend_t backend, Pointer<ggml_tensor> tensor, Pointer<Void> data, int offset, int size) → void
ggml_backend_view_init(Pointer<ggml_tensor> tensor) → void
ggml_bf16_to_fp32(ggml_bf16_t arg0) double
ggml_bf16_to_fp32_row(Pointer<ggml_bf16_t> arg0, Pointer<Float> arg1, int arg2) → void
ggml_blck_size(ggml_type type) int
ggml_build_backward_expand(Pointer<ggml_context> ctx_static, Pointer<ggml_context> ctx_compute, Pointer<ggml_cgraph> cgraph, bool accumulate) → void
ggml_build_forward_expand(Pointer<ggml_cgraph> cgraph, Pointer<ggml_tensor> tensor) → void
ggml_can_repeat(Pointer<ggml_tensor> t0, Pointer<ggml_tensor> t1) bool
ggml_cast(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_type type) Pointer<ggml_tensor>
ggml_clamp(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double min, double max) Pointer<ggml_tensor>
ggml_concat(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int dim) Pointer<ggml_tensor>
ggml_cont(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_cont_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0) Pointer<ggml_tensor>
ggml_cont_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1) Pointer<ggml_tensor>
ggml_cont_3d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2) Pointer<ggml_tensor>
ggml_cont_4d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2, int ne3) Pointer<ggml_tensor>
ggml_conv_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s0, int p0, int d0) Pointer<ggml_tensor>
ggml_conv_1d_ph(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s, int d) Pointer<ggml_tensor>
ggml_conv_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s0, int s1, int p0, int p1, int d0, int d1) Pointer<ggml_tensor>
ggml_conv_2d_s1_ph(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_conv_2d_sk_p0(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_conv_depthwise_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s0, int s1, int p0, int p1, int d0, int d1) Pointer<ggml_tensor>
ggml_conv_transpose_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s0, int p0, int d0) Pointer<ggml_tensor>
ggml_conv_transpose_2d_p0(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int stride) Pointer<ggml_tensor>
ggml_cos(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_cos_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_count_equal(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_cpu_get_sve_cnt() int
ggml_cpu_has_amx_int8() int
ggml_cpu_has_arm_fma() int
ggml_cpu_has_avx() int
ggml_cpu_has_avx2() int
ggml_cpu_has_avx512() int
ggml_cpu_has_avx512_bf16() int
ggml_cpu_has_avx512_vbmi() int
ggml_cpu_has_avx512_vnni() int
ggml_cpu_has_avx_vnni() int
ggml_cpu_has_f16c() int
ggml_cpu_has_fma() int
ggml_cpu_has_fp16_va() int
ggml_cpu_has_llamafile() int
ggml_cpu_has_matmul_int8() int
ggml_cpu_has_neon() int
ggml_cpu_has_riscv_v() int
ggml_cpu_has_sse3() int
ggml_cpu_has_ssse3() int
ggml_cpu_has_sve() int
ggml_cpu_has_vsx() int
ggml_cpu_has_wasm_simd() int
ggml_cpu_init() → void
ggml_cpy(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_cross_entropy_loss(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_cross_entropy_loss_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c) Pointer<ggml_tensor>
ggml_cycles() int
ggml_cycles_per_ms() int
ggml_diag(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_diag_mask_inf(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_past) Pointer<ggml_tensor>
ggml_diag_mask_inf_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_past) Pointer<ggml_tensor>
ggml_diag_mask_zero(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_past) Pointer<ggml_tensor>
ggml_diag_mask_zero_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_past) Pointer<ggml_tensor>
ggml_div(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_div_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_dup(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_dup_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_dup_tensor(Pointer<ggml_context> ctx, Pointer<ggml_tensor> src) Pointer<ggml_tensor>
ggml_element_size(Pointer<ggml_tensor> tensor) int
ggml_elu(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_elu_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_exp(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_exp_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_flash_attn_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> q, Pointer<ggml_tensor> k, Pointer<ggml_tensor> v, Pointer<ggml_tensor> d, bool masked) Pointer<ggml_tensor>
ggml_flash_attn_ext(Pointer<ggml_context> ctx, Pointer<ggml_tensor> q, Pointer<ggml_tensor> k, Pointer<ggml_tensor> v, Pointer<ggml_tensor> mask, double scale, double max_bias, double logit_softcap) Pointer<ggml_tensor>
ggml_flash_attn_ext_get_prec(Pointer<ggml_tensor> a) ggml_prec
ggml_flash_attn_ext_set_prec(Pointer<ggml_tensor> a, ggml_prec prec) → void
ggml_fopen(Pointer<Char> fname, Pointer<Char> mode) Pointer<FILE>
ggml_format_name(Pointer<ggml_tensor> tensor, Pointer<Char> fmt) Pointer<ggml_tensor>
ggml_fp16_to_fp32(int arg0) double
ggml_fp16_to_fp32_row(Pointer<ggml_fp16_t> arg0, Pointer<Float> arg1, int arg2) → void
ggml_fp32_to_bf16(double arg0) ggml_bf16_t
ggml_fp32_to_bf16_row(Pointer<Float> arg0, Pointer<ggml_bf16_t> arg1, int arg2) → void
ggml_fp32_to_bf16_row_ref(Pointer<Float> arg0, Pointer<ggml_bf16_t> arg1, int arg2) → void
ggml_fp32_to_fp16(double arg0) int
ggml_fp32_to_fp16_row(Pointer<Float> arg0, Pointer<ggml_fp16_t> arg1, int arg2) → void
ggml_free(Pointer<ggml_context> ctx) → void
ggml_ftype_to_ggml_type(ggml_ftype ftype) ggml_type
ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, Pointer<ggml_cgraph> graph) bool
ggml_gallocr_free(ggml_gallocr_t galloc) → void
ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) int
ggml_gallocr_new(ggml_backend_buffer_type_t buft) ggml_gallocr_t
ggml_gallocr_new_n(Pointer<ggml_backend_buffer_type_t> bufts, int n_bufs) ggml_gallocr_t
ggml_gallocr_reserve(ggml_gallocr_t galloc, Pointer<ggml_cgraph> graph) bool
ggml_gallocr_reserve_n(ggml_gallocr_t galloc, Pointer<ggml_cgraph> graph, Pointer<Int> node_buffer_ids, Pointer<Int> leaf_buffer_ids) bool
ggml_gelu(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_gelu_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_gelu_quick(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_gelu_quick_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_get_data(Pointer<ggml_tensor> tensor) Pointer<Void>
ggml_get_data_f32(Pointer<ggml_tensor> tensor) Pointer<Float>
ggml_get_f32_1d(Pointer<ggml_tensor> tensor, int i) double
ggml_get_f32_nd(Pointer<ggml_tensor> tensor, int i0, int i1, int i2, int i3) double
ggml_get_first_tensor(Pointer<ggml_context> ctx) Pointer<ggml_tensor>
ggml_get_i32_1d(Pointer<ggml_tensor> tensor, int i) int
ggml_get_i32_nd(Pointer<ggml_tensor> tensor, int i0, int i1, int i2, int i3) int
ggml_get_max_tensor_size(Pointer<ggml_context> ctx) int
ggml_get_mem_buffer(Pointer<ggml_context> ctx) Pointer<Void>
ggml_get_mem_size(Pointer<ggml_context> ctx) int
ggml_get_name(Pointer<ggml_tensor> tensor) Pointer<Char>
ggml_get_next_tensor(Pointer<ggml_context> ctx, Pointer<ggml_tensor> tensor) Pointer<ggml_tensor>
ggml_get_no_alloc(Pointer<ggml_context> ctx) bool
ggml_get_rel_pos(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int qh, int kh) Pointer<ggml_tensor>
ggml_get_rows(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_get_rows_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c) Pointer<ggml_tensor>
ggml_get_tensor(Pointer<ggml_context> ctx, Pointer<Char> name) Pointer<ggml_tensor>
ggml_get_type_traits(ggml_type type) Pointer<ggml_type_traits>
ggml_get_type_traits_cpu(ggml_type type) Pointer<ggml_type_traits_cpu>
ggml_get_unary_op(Pointer<ggml_tensor> tensor) ggml_unary_op
ggml_graph_add_node(Pointer<ggml_cgraph> cgraph, Pointer<ggml_tensor> tensor) → void
ggml_graph_clear(Pointer<ggml_cgraph> cgraph) → void
ggml_graph_compute(Pointer<ggml_cgraph> cgraph, Pointer<ggml_cplan> cplan) ggml_status
ggml_graph_compute_with_ctx(Pointer<ggml_context> ctx, Pointer<ggml_cgraph> cgraph, int n_threads) ggml_status
ggml_graph_cpy(Pointer<ggml_cgraph> src, Pointer<ggml_cgraph> dst) → void
ggml_graph_dump_dot(Pointer<ggml_cgraph> gb, Pointer<ggml_cgraph> gf, Pointer<Char> filename) → void
ggml_graph_dup(Pointer<ggml_context> ctx, Pointer<ggml_cgraph> cgraph) Pointer<ggml_cgraph>
ggml_graph_export(Pointer<ggml_cgraph> cgraph, Pointer<Char> fname) → void
ggml_graph_get_grad(Pointer<ggml_cgraph> cgraph, Pointer<ggml_tensor> node) Pointer<ggml_tensor>
ggml_graph_get_grad_acc(Pointer<ggml_cgraph> cgraph, Pointer<ggml_tensor> node) Pointer<ggml_tensor>
ggml_graph_get_tensor(Pointer<ggml_cgraph> cgraph, Pointer<Char> name) Pointer<ggml_tensor>
ggml_graph_import(Pointer<Char> fname, Pointer<Pointer<ggml_context>> ctx_data, Pointer<Pointer<ggml_context>> ctx_eval) Pointer<ggml_cgraph>
ggml_graph_n_nodes(Pointer<ggml_cgraph> cgraph) int
ggml_graph_node(Pointer<ggml_cgraph> cgraph, int i) Pointer<ggml_tensor>
ggml_graph_nodes(Pointer<ggml_cgraph> cgraph) Pointer<Pointer<ggml_tensor>>
ggml_graph_overhead() int
ggml_graph_overhead_custom(int size, bool grads) int
ggml_graph_plan(Pointer<ggml_cgraph> cgraph, int n_threads, Pointer<ggml_threadpool> threadpool) ggml_cplan
ggml_graph_print(Pointer<ggml_cgraph> cgraph) → void
ggml_graph_reset(Pointer<ggml_cgraph> cgraph) → void
ggml_graph_size(Pointer<ggml_cgraph> cgraph) int
ggml_group_norm(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_groups, double eps) Pointer<ggml_tensor>
ggml_group_norm_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int n_groups, double eps) Pointer<ggml_tensor>
ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) bool
ggml_hardsigmoid(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_hardswish(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_im2col(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int s0, int s1, int p0, int p1, int d0, int d1, bool is_2D, ggml_type dst_type) Pointer<ggml_tensor>
ggml_im2col_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<Int64> ne, int s0, int s1, int p0, int p1, int d0, int d1, bool is_2D) Pointer<ggml_tensor>
ggml_init(ggml_init_params params) Pointer<ggml_context>
ggml_is_3d(Pointer<ggml_tensor> tensor) bool
ggml_is_contiguous(Pointer<ggml_tensor> tensor) bool
ggml_is_contiguous_0(Pointer<ggml_tensor> tensor) bool
ggml_is_contiguous_1(Pointer<ggml_tensor> tensor) bool
ggml_is_contiguous_2(Pointer<ggml_tensor> tensor) bool
ggml_is_empty(Pointer<ggml_tensor> tensor) bool
ggml_is_matrix(Pointer<ggml_tensor> tensor) bool
ggml_is_numa() bool
ggml_is_permuted(Pointer<ggml_tensor> tensor) bool
ggml_is_quantized(ggml_type type) bool
ggml_is_scalar(Pointer<ggml_tensor> tensor) bool
ggml_is_transposed(Pointer<ggml_tensor> tensor) bool
ggml_is_vector(Pointer<ggml_tensor> tensor) bool
ggml_leaky_relu(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double negative_slope, bool inplace) Pointer<ggml_tensor>
ggml_log(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_log_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_log_set(ggml_log_callback log_callback, Pointer<Void> user_data) → void
ggml_map_binary_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_binary_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_binary_inplace_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_binary_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom1(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_custom1_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom1_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_custom1_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom1_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_custom1_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom1_inplace_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_custom1_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom2(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_custom2_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom2_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_custom2_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom2_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_custom2_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom2_inplace_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, ggml_custom2_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom3(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, ggml_custom3_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom3_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, ggml_custom3_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_custom3_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, ggml_custom3_op_t fun, int n_tasks, Pointer<Void> userdata) Pointer<ggml_tensor>
ggml_map_custom3_inplace_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, ggml_custom3_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_unary_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_unary_op_f32_t fun) Pointer<ggml_tensor>
ggml_map_unary_inplace_f32(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_unary_op_f32_t fun) Pointer<ggml_tensor>
ggml_mean(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_mul(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_mul_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_mul_mat(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_mul_mat_id(Pointer<ggml_context> ctx, Pointer<ggml_tensor> as1, Pointer<ggml_tensor> b, Pointer<ggml_tensor> ids) Pointer<ggml_tensor>
ggml_mul_mat_set_prec(Pointer<ggml_tensor> a, ggml_prec prec) → void
ggml_n_dims(Pointer<ggml_tensor> tensor) int
ggml_nbytes(Pointer<ggml_tensor> tensor) int
ggml_nbytes_pad(Pointer<ggml_tensor> tensor) int
ggml_neg(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_neg_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_nelements(Pointer<ggml_tensor> tensor) int
ggml_new_buffer(Pointer<ggml_context> ctx, int nbytes) Pointer<Void>
ggml_new_f32(Pointer<ggml_context> ctx, double value) Pointer<ggml_tensor>
ggml_new_graph(Pointer<ggml_context> ctx) Pointer<ggml_cgraph>
ggml_new_graph_custom(Pointer<ggml_context> ctx, int size, bool grads) Pointer<ggml_cgraph>
ggml_new_i32(Pointer<ggml_context> ctx, int value) Pointer<ggml_tensor>
ggml_new_tensor(Pointer<ggml_context> ctx, ggml_type type, int n_dims, Pointer<Int64> ne) Pointer<ggml_tensor>
ggml_new_tensor_1d(Pointer<ggml_context> ctx, ggml_type type, int ne0) Pointer<ggml_tensor>
ggml_new_tensor_2d(Pointer<ggml_context> ctx, ggml_type type, int ne0, int ne1) Pointer<ggml_tensor>
ggml_new_tensor_3d(Pointer<ggml_context> ctx, ggml_type type, int ne0, int ne1, int ne2) Pointer<ggml_tensor>
ggml_new_tensor_4d(Pointer<ggml_context> ctx, ggml_type type, int ne0, int ne1, int ne2, int ne3) Pointer<ggml_tensor>
ggml_norm(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double eps) Pointer<ggml_tensor>
ggml_norm_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double eps) Pointer<ggml_tensor>
ggml_nrows(Pointer<ggml_tensor> tensor) int
ggml_numa_init(ggml_numa_strategy numa) → void
ggml_op_desc(Pointer<ggml_tensor> t) Pointer<Char>
ggml_op_name(ggml_op op) Pointer<Char>
ggml_op_symbol(ggml_op op) Pointer<Char>
ggml_opt_step_adamw(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> grad, Pointer<ggml_tensor> m, Pointer<ggml_tensor> v, Pointer<ggml_tensor> adamw_params) Pointer<ggml_tensor>
ggml_out_prod(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_pad(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int p0, int p1, int p2, int p3) Pointer<ggml_tensor>
ggml_permute(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int axis0, int axis1, int axis2, int axis3) Pointer<ggml_tensor>
ggml_pool_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_op_pool op, int k0, int s0, int p0) Pointer<ggml_tensor>
ggml_pool_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_op_pool op, int k0, int k1, int s0, int s1, double p0, double p1) Pointer<ggml_tensor>
ggml_pool_2d_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> af, ggml_op_pool op, int k0, int k1, int s0, int s1, double p0, double p1) Pointer<ggml_tensor>
ggml_print_object(Pointer<ggml_object> obj) → void
ggml_print_objects(Pointer<ggml_context> ctx) → void
ggml_quantize_chunk(ggml_type type, Pointer<Float> src, Pointer<Void> dst, int start, int nrows, int n_per_row, Pointer<Float> imatrix) int
ggml_quantize_free() → void
ggml_quantize_init(ggml_type type) → void
ggml_quantize_requires_imatrix(ggml_type type) bool
ggml_relu(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_relu_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_repeat(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_repeat_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_reset(Pointer<ggml_context> ctx) → void
ggml_reshape(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_reshape_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0) Pointer<ggml_tensor>
ggml_reshape_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1) Pointer<ggml_tensor>
ggml_reshape_3d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2) Pointer<ggml_tensor>
ggml_reshape_4d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2, int ne3) Pointer<ggml_tensor>
ggml_rms_norm(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double eps) Pointer<ggml_tensor>
ggml_rms_norm_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, double eps) Pointer<ggml_tensor>
ggml_rms_norm_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double eps) Pointer<ggml_tensor>
ggml_rope(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int n_dims, int mode) Pointer<ggml_tensor>
ggml_rope_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, int n_dims, int mode, int n_ctx_orig, double freq_base, double freq_scale, double ext_factor, double attn_factor, double beta_fast, double beta_slow) Pointer<ggml_tensor>
ggml_rope_custom(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int n_dims, int mode, int n_ctx_orig, double freq_base, double freq_scale, double ext_factor, double attn_factor, double beta_fast, double beta_slow) Pointer<ggml_tensor>
ggml_rope_custom_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int n_dims, int mode, int n_ctx_orig, double freq_base, double freq_scale, double ext_factor, double attn_factor, double beta_fast, double beta_slow) Pointer<ggml_tensor>
ggml_rope_ext(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, int n_dims, int mode, int n_ctx_orig, double freq_base, double freq_scale, double ext_factor, double attn_factor, double beta_fast, double beta_slow) Pointer<ggml_tensor>
ggml_rope_ext_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, Pointer<ggml_tensor> c, int n_dims, int mode, int n_ctx_orig, double freq_base, double freq_scale, double ext_factor, double attn_factor, double beta_fast, double beta_slow) Pointer<ggml_tensor>
ggml_rope_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int n_dims, int mode) Pointer<ggml_tensor>
ggml_rope_yarn_corr_dims(int n_dims, int n_ctx_orig, double freq_base, double beta_fast, double beta_slow, Pointer<Float> dims) → void
ggml_row_size(ggml_type type, int ne) int
ggml_rwkv_wkv6(Pointer<ggml_context> ctx, Pointer<ggml_tensor> k, Pointer<ggml_tensor> v, Pointer<ggml_tensor> r, Pointer<ggml_tensor> tf, Pointer<ggml_tensor> td, Pointer<ggml_tensor> state) Pointer<ggml_tensor>
ggml_scale(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double s) Pointer<ggml_tensor>
ggml_scale_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, double s) Pointer<ggml_tensor>
ggml_set(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int nb2, int nb3, int offset) Pointer<ggml_tensor>
ggml_set_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int offset) Pointer<ggml_tensor>
ggml_set_1d_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int offset) Pointer<ggml_tensor>
ggml_set_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int offset) Pointer<ggml_tensor>
ggml_set_2d_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int offset) Pointer<ggml_tensor>
ggml_set_f32(Pointer<ggml_tensor> tensor, double value) Pointer<ggml_tensor>
ggml_set_f32_1d(Pointer<ggml_tensor> tensor, int i, double value) → void
ggml_set_f32_nd(Pointer<ggml_tensor> tensor, int i0, int i1, int i2, int i3, double value) → void
ggml_set_i32(Pointer<ggml_tensor> tensor, int value) Pointer<ggml_tensor>
ggml_set_i32_1d(Pointer<ggml_tensor> tensor, int i, int value) → void
ggml_set_i32_nd(Pointer<ggml_tensor> tensor, int i0, int i1, int i2, int i3, int value) → void
ggml_set_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b, int nb1, int nb2, int nb3, int offset) Pointer<ggml_tensor>
ggml_set_input(Pointer<ggml_tensor> tensor) → void
ggml_set_loss(Pointer<ggml_tensor> tensor) → void
ggml_set_name(Pointer<ggml_tensor> tensor, Pointer<Char> name) Pointer<ggml_tensor>
ggml_set_no_alloc(Pointer<ggml_context> ctx, bool no_alloc) → void
ggml_set_output(Pointer<ggml_tensor> tensor) → void
ggml_set_param(Pointer<ggml_context> ctx, Pointer<ggml_tensor> tensor) → void
ggml_set_zero(Pointer<ggml_tensor> tensor) Pointer<ggml_tensor>
ggml_sgn(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sgn_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sigmoid(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sigmoid_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_silu(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_silu_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_silu_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sin(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sin_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_soft_max(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_soft_max_back(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_soft_max_back_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_soft_max_ext(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> mask, double scale, double max_bias) Pointer<ggml_tensor>
ggml_soft_max_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sqr(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sqr_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sqrt(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sqrt_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_ssm_conv(Pointer<ggml_context> ctx, Pointer<ggml_tensor> sx, Pointer<ggml_tensor> c) Pointer<ggml_tensor>
ggml_ssm_scan(Pointer<ggml_context> ctx, Pointer<ggml_tensor> s, Pointer<ggml_tensor> x, Pointer<ggml_tensor> dt, Pointer<ggml_tensor> A, Pointer<ggml_tensor> B, Pointer<ggml_tensor> C) Pointer<ggml_tensor>
ggml_status_to_string(ggml_status status) Pointer<Char>
ggml_step(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_step_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sub(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_sub_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, Pointer<ggml_tensor> b) Pointer<ggml_tensor>
ggml_sum(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_sum_rows(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_tallocr_alloc(Pointer<ggml_tallocr> talloc, Pointer<ggml_tensor> tensor) → void
ggml_tallocr_new(ggml_backend_buffer_t buffer) ggml_tallocr
ggml_tanh(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_tanh_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_tensor_overhead() int
ggml_threadpool_free(Pointer<ggml_threadpool> threadpool) → void
ggml_threadpool_get_n_threads(Pointer<ggml_threadpool> threadpool) int
ggml_threadpool_new(Pointer<ggml_threadpool_params> params) Pointer<ggml_threadpool>
ggml_threadpool_params_default(int n_threads) ggml_threadpool_params
ggml_threadpool_params_init(Pointer<ggml_threadpool_params> p, int n_threads) → void
ggml_threadpool_params_match(Pointer<ggml_threadpool_params> p0, Pointer<ggml_threadpool_params> p1) bool
ggml_threadpool_pause(Pointer<ggml_threadpool> threadpool) → void
ggml_threadpool_resume(Pointer<ggml_threadpool> threadpool) → void
ggml_time_init() → void
ggml_time_ms() int
ggml_time_us() int
ggml_timestep_embedding(Pointer<ggml_context> ctx, Pointer<ggml_tensor> timesteps, int dim, int max_period) Pointer<ggml_tensor>
ggml_top_k(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int k) Pointer<ggml_tensor>
ggml_transpose(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a) Pointer<ggml_tensor>
ggml_type_name(ggml_type type) Pointer<Char>
ggml_type_size(ggml_type type) int
ggml_type_sizef(ggml_type type) double
ggml_unary(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_unary_op op) Pointer<ggml_tensor>
ggml_unary_inplace(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, ggml_unary_op op) Pointer<ggml_tensor>
ggml_unary_op_name(ggml_unary_op op) Pointer<Char>
ggml_unravel_index(Pointer<ggml_tensor> tensor, int i, Pointer<Int64> i0, Pointer<Int64> i1, Pointer<Int64> i2, Pointer<Int64> i3) → void
ggml_upscale(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int scale_factor) Pointer<ggml_tensor>
ggml_upscale_ext(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2, int ne3) Pointer<ggml_tensor>
ggml_used_mem(Pointer<ggml_context> ctx) int
ggml_validate_row_data(ggml_type type, Pointer<Void> data, int nbytes) bool
ggml_view_1d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int offset) Pointer<ggml_tensor>
ggml_view_2d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int nb1, int offset) Pointer<ggml_tensor>
ggml_view_3d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2, int nb1, int nb2, int offset) Pointer<ggml_tensor>
ggml_view_4d(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int ne0, int ne1, int ne2, int ne3, int nb1, int nb2, int nb3, int offset) Pointer<ggml_tensor>
ggml_view_tensor(Pointer<ggml_context> ctx, Pointer<ggml_tensor> src) Pointer<ggml_tensor>
ggml_win_part(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int w) Pointer<ggml_tensor>
ggml_win_unpart(Pointer<ggml_context> ctx, Pointer<ggml_tensor> a, int w0, int h0, int w) Pointer<ggml_tensor>
gguf_add_tensor(Pointer<gguf_context> ctx, Pointer<ggml_tensor> tensor) → void
gguf_find_key(Pointer<gguf_context> ctx, Pointer<Char> key) int
gguf_find_tensor(Pointer<gguf_context> ctx, Pointer<Char> name) int
gguf_free(Pointer<gguf_context> ctx) → void
gguf_get_alignment(Pointer<gguf_context> ctx) int
gguf_get_arr_data(Pointer<gguf_context> ctx, int key_id) Pointer<Void>
gguf_get_arr_n(Pointer<gguf_context> ctx, int key_id) int
gguf_get_arr_str(Pointer<gguf_context> ctx, int key_id, int i) Pointer<Char>
gguf_get_arr_type(Pointer<gguf_context> ctx, int key_id) gguf_type
gguf_get_data(Pointer<gguf_context> ctx) Pointer<Void>
gguf_get_data_offset(Pointer<gguf_context> ctx) int
gguf_get_key(Pointer<gguf_context> ctx, int key_id) Pointer<Char>
gguf_get_kv_type(Pointer<gguf_context> ctx, int key_id) gguf_type
gguf_get_meta_data(Pointer<gguf_context> ctx, Pointer<Void> data) → void
gguf_get_meta_size(Pointer<gguf_context> ctx) int
gguf_get_n_kv(Pointer<gguf_context> ctx) int
gguf_get_n_tensors(Pointer<gguf_context> ctx) int
gguf_get_tensor_name(Pointer<gguf_context> ctx, int i) Pointer<Char>
gguf_get_tensor_offset(Pointer<gguf_context> ctx, int i) int
gguf_get_tensor_type(Pointer<gguf_context> ctx, int i) ggml_type
gguf_get_val_bool(Pointer<gguf_context> ctx, int key_id) bool
gguf_get_val_data(Pointer<gguf_context> ctx, int key_id) Pointer<Void>
gguf_get_val_f32(Pointer<gguf_context> ctx, int key_id) double
gguf_get_val_f64(Pointer<gguf_context> ctx, int key_id) double
gguf_get_val_i16(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_i32(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_i64(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_i8(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_str(Pointer<gguf_context> ctx, int key_id) Pointer<Char>
gguf_get_val_u16(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_u32(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_u64(Pointer<gguf_context> ctx, int key_id) int
gguf_get_val_u8(Pointer<gguf_context> ctx, int key_id) int
gguf_get_version(Pointer<gguf_context> ctx) int
gguf_init_empty() Pointer<gguf_context>
gguf_init_from_file(Pointer<Char> fname, gguf_init_params params) Pointer<gguf_context>
gguf_remove_key(Pointer<gguf_context> ctx, Pointer<Char> key) → void
gguf_set_arr_data(Pointer<gguf_context> ctx, Pointer<Char> key, gguf_type type, Pointer<Void> data, int n) → void
gguf_set_arr_str(Pointer<gguf_context> ctx, Pointer<Char> key, Pointer<Pointer<Char>> data, int n) → void
gguf_set_kv(Pointer<gguf_context> ctx, Pointer<gguf_context> src) → void
gguf_set_tensor_data(Pointer<gguf_context> ctx, Pointer<Char> name, Pointer<Void> data, int size) → void
gguf_set_tensor_type(Pointer<gguf_context> ctx, Pointer<Char> name, ggml_type type) → void
gguf_set_val_bool(Pointer<gguf_context> ctx, Pointer<Char> key, bool val) → void
gguf_set_val_f32(Pointer<gguf_context> ctx, Pointer<Char> key, double val) → void
gguf_set_val_f64(Pointer<gguf_context> ctx, Pointer<Char> key, double val) → void
gguf_set_val_i16(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_i32(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_i64(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_i8(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_str(Pointer<gguf_context> ctx, Pointer<Char> key, Pointer<Char> val) → void
gguf_set_val_u16(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_u32(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_u64(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_set_val_u8(Pointer<gguf_context> ctx, Pointer<Char> key, int val) → void
gguf_type_name(gguf_type type) Pointer<Char>
gguf_write_to_file(Pointer<gguf_context> ctx, Pointer<Char> fname, bool only_meta) → void
llama_add_bos_token(Pointer<llama_model> model) bool
llama_add_eos_token(Pointer<llama_model> model) bool
llama_attach_threadpool(Pointer<llama_context> ctx, ggml_threadpool_t threadpool, ggml_threadpool_t threadpool_batch) → void
llama_backend_free() → void
llama_backend_init() → void
llama_batch_free(llama_batch batch) → void
llama_batch_get_one(Pointer<llama_token> tokens, int n_tokens) llama_batch
llama_batch_init(int n_tokens, int embd, int n_seq_max) llama_batch
llama_chat_apply_template(Pointer<llama_model> model, Pointer<Char> tmpl, Pointer<llama_chat_message> chat, int n_msg, bool add_ass, Pointer<Char> buf, int length) int
Apply chat template. Inspired by hf apply_chat_template() on python. Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. @param chat Pointer to a list of multiple llama_chat_message @param n_msg Number of llama_chat_message in this chat @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message. @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages) @param length The size of the allocated buffer @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template.
llama_context_default_params() llama_context_params
llama_control_vector_apply(Pointer<llama_context> lctx, Pointer<Float> data, int len, int n_embd, int il_start, int il_end) int
llama_copy_state_data(Pointer<llama_context> ctx, Pointer<Uint8> dst) int
llama_decode(Pointer<llama_context> ctx, llama_batch batch) int
llama_detach_threadpool(Pointer<llama_context> ctx) → void
llama_detokenize(Pointer<llama_model> model, Pointer<llama_token> tokens, int n_tokens, Pointer<Char> text, int text_len_max, bool remove_special, bool unparse_special) int
@details Convert the provided tokens into text (inverse of llama_tokenize()). @param text The char pointer must be large enough to hold the resulting text. @return Returns the number of chars/bytes on success, no more than text_len_max. @return Returns a negative number on failure - the number of chars/bytes that would have been returned. @param remove_special Allow to remove BOS and EOS tokens if model is configured to do so. @param unparse_special If true, special tokens are rendered in the output.
llama_encode(Pointer<llama_context> ctx, llama_batch batch) int
llama_free(Pointer<llama_context> ctx) → void
llama_free_model(Pointer<llama_model> model) → void
llama_get_embeddings(Pointer<llama_context> ctx) Pointer<Float>
llama_get_embeddings_ith(Pointer<llama_context> ctx, int i) Pointer<Float>
llama_get_embeddings_seq(Pointer<llama_context> ctx, int seq_id) Pointer<Float>
llama_get_kv_cache_token_count(Pointer<llama_context> ctx) int
llama_get_kv_cache_used_cells(Pointer<llama_context> ctx) int
llama_get_logits(Pointer<llama_context> ctx) Pointer<Float>
llama_get_logits_ith(Pointer<llama_context> ctx, int i) Pointer<Float>
llama_get_model(Pointer<llama_context> ctx) Pointer<llama_model>
llama_get_model_tensor(Pointer<llama_model> model, Pointer<Char> name) Pointer<ggml_tensor>
llama_get_state_size(Pointer<llama_context> ctx) int
llama_kv_cache_can_shift(Pointer<llama_context> ctx) bool
llama_kv_cache_clear(Pointer<llama_context> ctx) → void
llama_kv_cache_defrag(Pointer<llama_context> ctx) → void
llama_kv_cache_seq_add(Pointer<llama_context> ctx, int seq_id, int p0, int p1, int delta) → void
llama_kv_cache_seq_cp(Pointer<llama_context> ctx, int seq_id_src, int seq_id_dst, int p0, int p1) → void
llama_kv_cache_seq_div(Pointer<llama_context> ctx, int seq_id, int p0, int p1, int d) → void
llama_kv_cache_seq_keep(Pointer<llama_context> ctx, int seq_id) → void
llama_kv_cache_seq_pos_max(Pointer<llama_context> ctx, int seq_id) int
llama_kv_cache_seq_rm(Pointer<llama_context> ctx, int seq_id, int p0, int p1) bool
llama_kv_cache_update(Pointer<llama_context> ctx) → void
llama_kv_cache_view_free(Pointer<llama_kv_cache_view> view) → void
llama_kv_cache_view_init(Pointer<llama_context> ctx, int n_seq_max) llama_kv_cache_view
llama_kv_cache_view_update(Pointer<llama_context> ctx, Pointer<llama_kv_cache_view> view) → void
llama_load_model_from_file(Pointer<Char> path_model, llama_model_params params) Pointer<llama_model>
llama_load_session_file(Pointer<llama_context> ctx, Pointer<Char> path_session, Pointer<llama_token> tokens_out, int n_token_capacity, Pointer<Size> n_token_count_out) bool
llama_log_set(ggml_log_callback log_callback, Pointer<Void> user_data) → void
llama_lora_adapter_clear(Pointer<llama_context> ctx) → void
llama_lora_adapter_free(Pointer<llama_lora_adapter> adapter) → void
llama_lora_adapter_init(Pointer<llama_model> model, Pointer<Char> path_lora) Pointer<llama_lora_adapter>
llama_lora_adapter_remove(Pointer<llama_context> ctx, Pointer<llama_lora_adapter> adapter) int
llama_lora_adapter_set(Pointer<llama_context> ctx, Pointer<llama_lora_adapter> adapter, double scale) int
llama_max_devices() int
llama_model_decoder_start_token(Pointer<llama_model> model) int
llama_model_default_params() llama_model_params
llama_model_desc(Pointer<llama_model> model, Pointer<Char> buf, int buf_size) int
llama_model_has_decoder(Pointer<llama_model> model) bool
llama_model_has_encoder(Pointer<llama_model> model) bool
llama_model_is_recurrent(Pointer<llama_model> model) bool
llama_model_meta_count(Pointer<llama_model> model) int
llama_model_meta_key_by_index(Pointer<llama_model> model, int i, Pointer<Char> buf, int buf_size) int
llama_model_meta_val_str(Pointer<llama_model> model, Pointer<Char> key, Pointer<Char> buf, int buf_size) int
llama_model_meta_val_str_by_index(Pointer<llama_model> model, int i, Pointer<Char> buf, int buf_size) int
llama_model_n_params(Pointer<llama_model> model) int
llama_model_quantize(Pointer<Char> fname_inp, Pointer<Char> fname_out, Pointer<llama_model_quantize_params> params) int
llama_model_quantize_default_params() llama_model_quantize_params
llama_model_size(Pointer<llama_model> model) int
llama_n_batch(Pointer<llama_context> ctx) int
llama_n_ctx(Pointer<llama_context> ctx) int
llama_n_ctx_train(Pointer<llama_model> model) int
llama_n_embd(Pointer<llama_model> model) int
llama_n_head(Pointer<llama_model> model) int
llama_n_layer(Pointer<llama_model> model) int
llama_n_seq_max(Pointer<llama_context> ctx) int
llama_n_threads(Pointer<llama_context> ctx) int
llama_n_threads_batch(Pointer<llama_context> ctx) int
llama_n_ubatch(Pointer<llama_context> ctx) int
llama_n_vocab(Pointer<llama_model> model) int
llama_new_context_with_model(Pointer<llama_model> model, llama_context_params params) Pointer<llama_context>
llama_numa_init(ggml_numa_strategy numa) → void
llama_perf_context(Pointer<llama_context> ctx) llama_perf_context_data
llama_perf_context_print(Pointer<llama_context> ctx) → void
llama_perf_context_reset(Pointer<llama_context> ctx) → void
llama_perf_sampler(Pointer<llama_sampler> chain) llama_perf_sampler_data
llama_perf_sampler_print(Pointer<llama_sampler> chain) → void
llama_perf_sampler_reset(Pointer<llama_sampler> chain) → void
llama_pooling_type1(Pointer<llama_context> ctx) llama_pooling_type
llama_print_system_info() Pointer<Char>
llama_rope_freq_scale_train(Pointer<llama_model> model) double
llama_rope_type1(Pointer<llama_model> model) llama_rope_type
llama_sampler_accept(Pointer<llama_sampler> smpl, int token) → void
llama_sampler_apply(Pointer<llama_sampler> smpl, Pointer<llama_token_data_array> cur_p) → void
llama_sampler_chain_add(Pointer<llama_sampler> chain, Pointer<llama_sampler> smpl) → void
llama_sampler_chain_default_params() llama_sampler_chain_params
llama_sampler_chain_get(Pointer<llama_sampler> chain, int i) Pointer<llama_sampler>
llama_sampler_chain_init(llama_sampler_chain_params params) Pointer<llama_sampler>
llama_sampler_chain_n(Pointer<llama_sampler> chain) int
llama_sampler_chain_remove(Pointer<llama_sampler> chain, int i) Pointer<llama_sampler>
llama_sampler_clone(Pointer<llama_sampler> smpl) Pointer<llama_sampler>
llama_sampler_free(Pointer<llama_sampler> smpl) → void
llama_sampler_get_seed(Pointer<llama_sampler> smpl) int
llama_sampler_init_dist(int seed) Pointer<llama_sampler>
llama_sampler_init_dry(Pointer<llama_model> model, double dry_multiplier, double dry_base, int dry_allowed_length, int dry_penalty_last_n, Pointer<Pointer<Char>> seq_breakers, int num_breakers) Pointer<llama_sampler>
@details DRY sampler, designed by p-e-w, as described in: https://github.com/oobabooga/text-generation-webui/pull/5677, porting Koboldcpp implementation authored by pi6am: https://github.com/LostRuins/koboldcpp/pull/982
llama_sampler_init_grammar(Pointer<llama_model> model, Pointer<Char> grammar_str, Pointer<Char> grammar_root) Pointer<llama_sampler>
llama_sampler_init_greedy() Pointer<llama_sampler>
llama_sampler_init_infill(Pointer<llama_model> model) Pointer<llama_sampler>
llama_sampler_init_logit_bias(int n_vocab, int n_logit_bias, Pointer<llama_logit_bias> logit_bias) Pointer<llama_sampler>
llama_sampler_init_min_p(double p, int min_keep) Pointer<llama_sampler>
@details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
llama_sampler_init_mirostat(int n_vocab, int seed, double tau, double eta, int m) Pointer<llama_sampler>
@details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. @param candidates A vector of llama_token_data containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @param eta The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates. @param m The number of tokens considered in the estimation of s_hat. This is an arbitrary value that is used to calculate s_hat, which in turn helps to calculate the value of k. In the paper, they use m = 100, but you can experiment with different values to see how it affects the performance of the algorithm. @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau) and is updated in the algorithm based on the error between the target and observed surprisal.
llama_sampler_init_mirostat_v2(int seed, double tau, double eta) Pointer<llama_sampler>
@details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. @param candidates A vector of llama_token_data containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. @param eta The learning rate used to update mu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause mu to be updated more quickly, while a smaller learning rate will result in slower updates. @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (2 * tau) and is updated in the algorithm based on the error between the target and observed surprisal.
llama_sampler_init_penalties(int n_vocab, int special_eos_id, int linefeed_id, int penalty_last_n, double penalty_repeat, double penalty_freq, double penalty_present, bool penalize_nl, bool ignore_eos) Pointer<llama_sampler>
llama_sampler_init_softmax() Pointer<llama_sampler>
@details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. NOTE: Avoid using on the full vocabulary as the sorting can become slow. For example, apply top-k or top-p sampling first.
llama_sampler_init_temp(double t) Pointer<llama_sampler>
#details Updates the logits l_i` = l_i/t. When t <= 0.0f, the maximum logit is kept at it's original value, the rest are set to -inf
llama_sampler_init_temp_ext(double t, double delta, double exponent) Pointer<llama_sampler>
@details Dynamic temperature implementation (a.k.a. entropy) described in the paper https://arxiv.org/abs/2309.02772.
llama_sampler_init_top_k(int k) Pointer<llama_sampler>
@details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
llama_sampler_init_top_p(double p, int min_keep) Pointer<llama_sampler>
@details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
llama_sampler_init_typical(double p, int min_keep) Pointer<llama_sampler>
@details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
llama_sampler_init_xtc(double p, double t, int min_keep, int seed) Pointer<llama_sampler>
@details XTC sampler as described in https://github.com/oobabooga/text-generation-webui/pull/6335
llama_sampler_name(Pointer<llama_sampler> smpl) Pointer<Char>
llama_sampler_reset(Pointer<llama_sampler> smpl) → void
llama_sampler_sample(Pointer<llama_sampler> smpl, Pointer<llama_context> ctx, int idx) int
llama_save_session_file(Pointer<llama_context> ctx, Pointer<Char> path_session, Pointer<llama_token> tokens, int n_token_count) bool
llama_set_abort_callback(Pointer<llama_context> ctx, ggml_abort_callback abort_callback, Pointer<Void> abort_callback_data) → void
llama_set_causal_attn(Pointer<llama_context> ctx, bool causal_attn) → void
llama_set_embeddings(Pointer<llama_context> ctx, bool embeddings) → void
llama_set_n_threads(Pointer<llama_context> ctx, int n_threads, int n_threads_batch) → void
llama_set_state_data(Pointer<llama_context> ctx, Pointer<Uint8> src) int
llama_split_path(Pointer<Char> split_path, int maxlen, Pointer<Char> path_prefix, int split_no, int split_count) int
@details Build a split GGUF final path for this chunk. llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf"
llama_split_prefix(Pointer<Char> split_prefix, int maxlen, Pointer<Char> split_path, int split_no, int split_count) int
@details Extract the path prefix from the split_path if and only if the split_no and split_count match. llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0"
llama_state_get_data(Pointer<llama_context> ctx, Pointer<Uint8> dst, int size) int
llama_state_get_size(Pointer<llama_context> ctx) int
llama_state_load_file(Pointer<llama_context> ctx, Pointer<Char> path_session, Pointer<llama_token> tokens_out, int n_token_capacity, Pointer<Size> n_token_count_out) bool
llama_state_save_file(Pointer<llama_context> ctx, Pointer<Char> path_session, Pointer<llama_token> tokens, int n_token_count) bool
llama_state_seq_get_data(Pointer<llama_context> ctx, Pointer<Uint8> dst, int size, int seq_id) int
llama_state_seq_get_size(Pointer<llama_context> ctx, int seq_id) int
llama_state_seq_load_file(Pointer<llama_context> ctx, Pointer<Char> filepath, int dest_seq_id, Pointer<llama_token> tokens_out, int n_token_capacity, Pointer<Size> n_token_count_out) int
llama_state_seq_save_file(Pointer<llama_context> ctx, Pointer<Char> filepath, int seq_id, Pointer<llama_token> tokens, int n_token_count) int
llama_state_seq_set_data(Pointer<llama_context> ctx, Pointer<Uint8> src, int size, int dest_seq_id) int
llama_state_set_data(Pointer<llama_context> ctx, Pointer<Uint8> src, int size) int
llama_supports_gpu_offload() bool
llama_supports_mlock() bool
llama_supports_mmap() bool
llama_supports_rpc() bool
llama_synchronize(Pointer<llama_context> ctx) → void
llama_time_us() int
llama_token_bos(Pointer<llama_model> model) int
llama_token_cls(Pointer<llama_model> model) int
llama_token_eos(Pointer<llama_model> model) int
llama_token_eot(Pointer<llama_model> model) int
llama_token_fim_mid(Pointer<llama_model> model) int
llama_token_fim_pad(Pointer<llama_model> model) int
llama_token_fim_pre(Pointer<llama_model> model) int
llama_token_fim_rep(Pointer<llama_model> model) int
llama_token_fim_sep(Pointer<llama_model> model) int
llama_token_fim_suf(Pointer<llama_model> model) int
llama_token_get_attr(Pointer<llama_model> model, Dartllama_token token) llama_token_attr
llama_token_get_score(Pointer<llama_model> model, int token) double
llama_token_get_text(Pointer<llama_model> model, int token) Pointer<Char>
llama_token_is_control(Pointer<llama_model> model, int token) bool
llama_token_is_eog(Pointer<llama_model> model, int token) bool
llama_token_middle(Pointer<llama_model> model) int
llama_token_nl(Pointer<llama_model> model) int
llama_token_pad(Pointer<llama_model> model) int
llama_token_prefix(Pointer<llama_model> model) int
llama_token_sep(Pointer<llama_model> model) int
llama_token_suffix(Pointer<llama_model> model) int
llama_token_to_piece(Pointer<llama_model> model, int token, Pointer<Char> buf, int length, int lstrip, bool special) int
llama_tokenize(Pointer<llama_model> model, Pointer<Char> text, int text_len, Pointer<llama_token> tokens, int n_tokens_max, bool add_special, bool parse_special) int
@details Convert the provided text into tokens. @param tokens The tokens pointer must be large enough to hold the resulting tokens. @return Returns the number of tokens on success, no more than n_tokens_max @return Returns a negative number on failure - the number of tokens that would have been returned @param add_special Allow to add BOS and EOS tokens if model is configured to do so. @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext. Does not insert a leading space.
llama_vocab_type1(Pointer<llama_model> model) llama_vocab_type
noSuchMethod(Invocation invocation) → dynamic
Invoked when a nonexistent method or property is accessed.
inherited
open_memstream(Pointer<Pointer<Char>> __bufp, Pointer<Size> __sizep) Pointer<FILE>
pclose(Pointer<FILE> arg0) int
perror(Pointer<Char> arg0) → void
popen(Pointer<Char> arg0, Pointer<Char> arg1) Pointer<FILE>
printf(Pointer<Char> arg0) int
putc(int arg0, Pointer<FILE> arg1) int
putc_unlocked(int arg0, Pointer<FILE> arg1) int
putchar(int arg0) int
putchar_unlocked(int arg0) int
puts(Pointer<Char> arg0) int
putw(int arg0, Pointer<FILE> arg1) int
remove(Pointer<Char> arg0) int
rename(Pointer<Char> __old, Pointer<Char> __new) int
renameat(int arg0, Pointer<Char> arg1, int arg2, Pointer<Char> arg3) int
renameatx_np(int arg0, Pointer<Char> arg1, int arg2, Pointer<Char> arg3, int arg4) int
renamex_np(Pointer<Char> arg0, Pointer<Char> arg1, int arg2) int
rewind(Pointer<FILE> arg0) → void
scanf(Pointer<Char> arg0) int
setbuf(Pointer<FILE> arg0, Pointer<Char> arg1) → void
setbuffer(Pointer<FILE> arg0, Pointer<Char> arg1, int arg2) → void
setlinebuf(Pointer<FILE> arg0) int
setvbuf(Pointer<FILE> arg0, Pointer<Char> arg1, int arg2, int arg3) int
snprintf(Pointer<Char> __str, int __size, Pointer<Char> __format) int
sprintf(Pointer<Char> arg0, Pointer<Char> arg1) int
sscanf(Pointer<Char> arg0, Pointer<Char> arg1) int
tempnam(Pointer<Char> __dir, Pointer<Char> __prefix) Pointer<Char>
tmpfile() Pointer<FILE>
tmpnam(Pointer<Char> arg0) Pointer<Char>
toString() String
A string representation of this object.
inherited
ungetc(int arg0, Pointer<FILE> arg1) int
vasprintf(Pointer<Pointer<Char>> arg0, Pointer<Char> arg1, va_list arg2) int
vdprintf(int arg0, Pointer<Char> arg1, va_list arg2) int
vfprintf(Pointer<FILE> arg0, Pointer<Char> arg1, va_list arg2) int
vfscanf(Pointer<FILE> __stream, Pointer<Char> __format, va_list arg2) int
vprintf(Pointer<Char> arg0, va_list arg1) int
vscanf(Pointer<Char> __format, va_list arg1) int
vsnprintf(Pointer<Char> __str, int __size, Pointer<Char> __format, va_list arg3) int
vsprintf(Pointer<Char> arg0, Pointer<Char> arg1, va_list arg2) int
vsscanf(Pointer<Char> __str, Pointer<Char> __format, va_list arg2) int

Operators

operator ==(Object other) bool
The equality operator.
inherited