ML Text Recognition
The easy way to use ML Kit for text recognition in Flutter.
ML Kit's text recognition can recognize text in Latin, Chinese, Devanagari, Japanese and Korean scripts and a wide range of languages. They can also be used to automate data-entry tasks such as processing credit cards, receipts, and business cards.
Getting Started
Add dependency to your flutter project:
$ pub add learning_text_recognition
Usage
import 'package:learning_text_recognition/learning_text_recognition.dart';
Input Image
As in other ML vision plugins, input is fed as an instance of InputImage
, which is part of package learning_input_image
.
You can use widget InputCameraView
from learning_input_image
as default implementation for processing image (or image stream) from camera / storage into InputImage
format. But feel free to learn the inside of InputCameraView
code if you want to create your own custom implementation.
Here is example of using InputCameraView
to get InputImage
for text recognition.
import 'package:learning_input_image/learning_input_image.dart';
InputCameraView(
canSwitchMode: false,
mode: InputCameraMode.gallery,
title: 'Text Recognition',
onImage: (InputImage image) {
// now we can feed the input image into text recognition process
},
)
Text Recognition
After getting the InputImage
, we can start doing text recognition by calling method process
from an instance of TextRecognition
.
// When using for Latin script
TextRecognition textRecognition = TextRecognition();
// or like this:
TextRecognition textRecognition = TextRecognition(
options: TextRecognitionOptions.Default
);
// When using for Chinese script
TextRecognition textRecognition = TextRecognition(
options: TextRecognitionOptions.Chinese
);
// When using for Devanagari script
TextRecognition textRecognition = TextRecognition(
options: TextRecognitionOptions.Devanagari
);
// When using for Japanese script
TextRecognition textRecognition = TextRecognition(
options: TextRecognitionOptions.Japanese
);
// When using for Korean script
TextRecognition textRecognition = TextRecognition(
options: TextRecognitionOptions.Korean
);
// Process text recognition...
RecognizedText result = await textRecognition.process(image);
Output
The result of text recognition is a RecognizedText
that contains nested elements describing the details of the recognized text from input image. Here is example of structure data inside RecognizedText
.
RecognizedText
RecognizedText | |
---|---|
Text |
Wege der parlamentarischen Demokratie |
Blocks | (1 block) |
TextBlock
TextBlock 0 | |
---|---|
Text | Wege der parlamentarischen Demokratie |
Frame | (117.0, 258.0, 190.0, 83.0) |
Corner Points | (117, 270), (301.64, 258.49), (306.05, 329.36), (121.41, 340.86) |
Recognized Language Code | de |
Lines | (3 lines) |
TextLine
TextLine 0 | |
---|---|
Text | Wege der |
Frame | (167.0, 261.0, 91.0, 28.0) |
Corner Points | (167, 267), (255.82, 261.46), (257.19, 283.42), (168.36, 288.95) |
Recognized Language Code | de |
Elements | (2 elements) |
TextElement
TextElement 0 | |
---|---|
Text | Wege |
Frame | (167.0, 263.0, 59.0, 26.0) |
Corner Points | (167, 267), (223.88, 263.45), (225.25, 285.41), (168.36, 288.95) |
Dispose
textRecognition.dispose();
Example Project
You can learn more from example project here.